zbMATH — the first resource for mathematics

\(D\)-strings on \(D\)-manifolds. (English) Zbl 1004.81535
Summary: We study the mechanism for the appearance of massless solitons in type II string compactifications. We find that by combining \(T\)-duality with strong/weak duality of type IIB in ten dimensions enhanced gauge symmetries and massless solitonic hypermultiplets encountered in Calabi-Yau compactifications can be studied perturbatively using \(D\)-strings (the strong/weak dual to type IIB string) compactified on “\(D\)-manifolds”. In particular the nearly massless solitonic states of the type IIB compactifications correspond to elementary states of \(D\)-strings. As examples we consider the \(D\)-string description of enhanced gauge symmetries for type IIA string compactification on ALE spaces with \(A_{n}\) singularities and type IIB on a class of singular Calabi-Yau 3-folds. The class we study includes as a special case the conifold singularity in which case the perturbative spectrum of the \(D\)-string includes the expected massless hypermultiplet with degeneracy one.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
Full Text: DOI arXiv
[1] Hull, C.M.; Townsend, P., Nucl. phys. B, 438, 109, (1995)
[2] Witten, E., Nucl. phys. B, 443, 85, (1995)
[3] Strominger, A., Nucl. phys. B, 451, 96, (1995)
[4] J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, preprint NSF-ITP-95-122, hep-th/951001.
[5] Polchinski, J., Phys. rev. D, 50, 6041, (1994)
[6] E. Witten, Bound states of strings and p-branes, IASSNS-HEP-95-83 Preprint, hep-th/9510135.
[7] J. Polchinski and E. Witten, Evidence for Heterotic Type I Duality, Preprint IASSNS-HEP-95-81, hepth/9510169. · Zbl 1004.81526
[8] D. Ghoshal and C. Vafa, C = 1 Strings as the Topological Theory of the Conifold, Preprint HUTP-95-A022, hep-th/9506122. · Zbl 0925.81150
[9] Mukhi, S.; Vafa, C., Nucl. phys. B, 407, 667, (1993)
[10] Witten, E.; Witten, E.; Zwiebach, B., Nucl. phys. B, Nucl. phys. B, 377, 55, (1992)
[11] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Comm. math. phys., 2, 311, (1994)
[12] Antoniadis, I.; Gava, E.; Narain, K.S.; Taylor, T.R., Nucl. phys. B, 413, 162, (1994)
[13] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, N = 2 Type II Heterotiic Duality and Higher Derivative F Terms, Preprint IC-95-177, hep-th/9507115. · Zbl 0925.81158
[14] Ghoshal, D.; Jatkar, D.P.; Mukhi, S., Nucl. phys. B, 395, 144, (1993)
[15] P.S. Aspinwall, N = 2 Dual Pair and a Phase Transition, Preprint CLNS-95-1366, hep-th/9510142.
[16] Aspinwall, P.S., Phys. lett. B, 357, 329, (1995)
[17] H. Ooguri and C. Vafa, to appear in Nuclear Physics B.
[18] Callan, C.G.; Harvey, J.A.; Strominger, A., Nucl. phys. B, 367, 60, (1991)
[19] E. Witten, Some Comments on String Dynamics, Preprint IASSNS-HEP-95-63, hep-th/9507121. · Zbl 1003.81535
[20] Greene, B.R.; Shapere, A.; Vafa, C.; Yau, S.T., Nucl. phys. B, 337, 1, (1990)
[21] J.H. Schwarz An SL(2,Z) Multiplet of Type 1113 Superstrings, Preprint CALT-68-2013, hep-th/9508143.
[22] Ghoshal, D.; Lakdawala, P.; Mukhi, S., Mod. phys. lett A, 8, 3187, (1993)
[23] Hubsch, T., Calabi-Yau manifolds, (1991), World Scientific
[24] Schoen, C., J. für math., 364, 85, (1986)
[25] Fendley, P.; Mathur, S.D.; Vafa, C.; Warner, N.P., Phys. lett. B, 243, 257, (1990)
[26] Vafa, C., Nucl. phys. B, 447, 252, (1995)
[27] Kachru, S.; Vafa, C., Nucl. phys. B, 450, 69, (1995)
[28] D. Morrison, private communication.
[29] K. Intriligator and N. Seiberg, Lectures on Supersymmetric Gauge Theories and Electric-Magnetic Duality, Preprint RU-95-48, hep-th/9509066. · Zbl 0914.58045
[30] Seiberg, N.; Witten, E., Nucl. phys. B, 426, 19, (1994)
[31] Klemm, A.; Lerche, W.; Mayr, P., Phys. lett. B, 357, 313, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.