×

zbMATH — the first resource for mathematics

Locking-free adaptive mixed finite element methods in linear elasticity. (English) Zbl 1004.74068
Summary: Mixed finite element methods such as PEERS (plane elasticity elements with reduced symmetry) or BDMS (Brezzi-Douglas-Marini-Stenberg elements) methods were designed to avoid locking for nearly incompressible materials in plane elasticity. In this paper, we establish a robust adaptime mesh-refining algorithm that is rigorously based on a reliable a posteriori error estimate. Numerical evidence is provided for \(\lambda\)-independence of the constants in a posteriori error bounds and for the efficiency of the proposed adaptive mesh-refining algorithm.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Software:
na14
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Alberty, C. Carstensen, S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation, Berichtsreihe des Mathematischen Seminars Kiel, Technical Report 98-11, Christian-Albrechts-Universität zu Kiel, Kiel, 1997, Num. Alg., accepted for publication (http://www.numerik.uni-kiel.de/reports/1998/98-11.html) · Zbl 0938.65129
[2] Alonso, A., Error estimators for a mixed method, Numer. math., 74, 385-395, (1996) · Zbl 0866.65068
[3] Arnold, D.N.; Brezzi, F.; Douglas, J., PEERS: A new finite element for plane elasticity, Japan J. appl. math., 1, 347-367, (1984) · Zbl 0633.73074
[4] Babuška, I.; Rheinboldt, W.C., Error estimates for adaptive finite element computations, SIAM numer. anal., 15, 736-754, (1978) · Zbl 0398.65069
[5] D. Braess, Finite Elements, Cambridge University Press, Cambridge, 1997 · Zbl 0894.65054
[6] Braess, D.; Klaas, O.; Niekamp, R.; Stein, E.; Wobschal, F., Error indicators for mixed finite elements in 2-dimensional linear elasticity, Comput. methods appl. mech. engrg., 127, 345-356, (1995) · Zbl 0860.73064
[7] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math., vol. 15, Springer, New York, 1994 · Zbl 0804.65101
[8] F. Brezzi, J. Douglas, L.D. Marini, Recent results on mixed finite element methods for second order elliptic problems, in: Vistas in Applied Mathematics. Numerical Analysis, Atmospheric Sciences and Immunology, Springer, Berlin, 1986 · Zbl 0611.65071
[9] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991 · Zbl 0788.73002
[10] Carstensen, C., A posteriori error estimate for the mixed finite element method, Math. comp., 66, 465-476, (1997) · Zbl 0864.65068
[11] C. Carstensen, Weighted Clément-type interpolation and a posteriori analysis for FEM, Berichtsreihe des Mathematischen Seminars Kiel, Technical Report, 97-19, Christian-Albrechts-Universität zu Kiel, Kiel, 1997, M^{2}AN, accepted for publication (http://www.numerik.uni-kiel.de/reports/1997/97-19.html)
[12] Carstensen, C.; Dolzmann, G., A posteriori error estimates for the mixed FEM in elasticity, Numer. math., 81, 187-209, (1998) · Zbl 0928.74093
[13] C. Carstensen, S.A. Funken, Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods, Berichtsreihe des Mathematischen Seminars Kiel, Technical Report, 97-11, Christian-Albrechts-Universität zu Kiel, Kiel, 1997, (http://www.numerik.uni-kiel.de/reports/1997/97-11.html)
[14] C. Carstensen, S.A. Funken, Fully reliable localised error control in the FEM, Berichtsreihe des Mathematischen Seminars Kiel, Technical Report, 97-12, Christian-Albrechts-Universität zu Kiel, Kiel, 1997, SIAM J. Sci. Comput., accepted for publication (http://www.numerik.uni-kiel.de/reports/1997/97-12.html)
[15] C. Carstensen, R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, Berichtsreihe des Mathematischen Seminars Kiel, Technical Report, 97-6, Christian-Albrechts-Universität zu Kiel, Kiel, 1997, SIAM J. Numer. Anal., accepted for publication (http://www.numerik.uni-kiel.de/reports/1997/97-6.html)
[16] Clément, P., Approximation by finite element functions using local regularization, RAIRO Sér. rouge anal. numér., R-2, 77-84, (1975) · Zbl 0368.65008
[17] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[18] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta numerica, 105-158, (1995) · Zbl 0829.65122
[19] B.X. Fraeijs de Veubeke, Stress function appoach, in: Proceedings of the World Congress on the Finite Element Method in Structural Mechanics, Bournemouth, 1975
[20] Girault, V.; Raviart, P.A., Finite element methods for navier – stokes equations, (1986), Springer Berlin · Zbl 0396.65070
[21] Stenberg, R., A family of mixed finite elements for the elasticity problem, Numer. math., 53, 513-538, (1988) · Zbl 0632.73063
[22] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam, 1977 · Zbl 0383.35057
[23] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, 1996
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.