×

zbMATH — the first resource for mathematics

A direct theory of affine rods. (English) Zbl 1004.74048
Summary: A direct theory of affine rods is developed from first principles. To concentrate on the central aspects of the model, we use an axiomatic format and tools from Lie group theory. To facilitate comparisons with other theories, we propose an identification procedure to derive the constitutive relations of the affine rod from those of a rod modeled as a three-dimensional body.

MSC:
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antman, S.A., Non linear problems in elasticity, (1995), Springer-Verlag
[2] Atilgan, A.R.; Hodges, D.H.; Özbeck, M.A.; Zhu, W., Space – time mixed finite elements for rods, J. sound vibrations, 192, 731-739, (1996) · Zbl 1232.74094
[3] Atluri, S.N.; Cazzani, A., Rotations in computational solid mechanics, Arch. comput. methods engrg., 2, 49-138, (1995)
[4] Bauchau, A.; Joo, T., Computational schemes for nonlinear elasto-dynamics, Internat. J. numer. methods engrg., 45, 693-719, (1999) · Zbl 0941.74078
[5] Borri, M.; Bottasso, C.L.; Mantegazza, P., Basic features of the time finite elements approach for dynamics, Meccanica, 27, 119-130, (1992) · Zbl 0758.70003
[6] Borri, M.; Trainelli, L.; Bottasso, C.L., On representations and parametrizations of motions, Multibody syst. dyn., 4, 129-193, (2000) · Zbl 0980.70004
[7] Bottasso, C.L.; Borri, M., An intrinsic beam model based on a elicoidal approximation – part I: formulation, Internat. J. numer. methods engrg., 37, 2267-2289, (1994)
[8] Capriz, G., A contribution to the theory of rods, Riv. mat. univ. parma, 4, 489-506, (1981) · Zbl 0584.73066
[9] Capriz, G., Continua with microstructure, Springer tracts in natural philosophy, 35, (1989), Springer-Verlag New York, Berlin
[10] Capriz, G.; Cohen, H., Mechanics of filiform bodies, Mech. res. comm., 15, 315-325, (1988) · Zbl 0665.73007
[11] Cohen, H., A non linear theory of elastic directed curves, Internat. J. engrg. sci., 4, 511-524, (1966)
[12] Cohen, H.; Muncaster, M.G., The theory of pseudo-rigid bodies, Springer tracts in natural philosophy, (1989), Springer-Verlag Berlin
[13] Cohen, H.; Sun, Q.-X., A further work on directed curves, J. elasticity, 28, 123-142, (1992) · Zbl 0762.73039
[14] Cosserat, E.; Cosserat, F., Théories des corps déformables, Libraire scientifique A. Hermann, parigi, (1909) · JFM 40.0862.02
[15] Crampin, M.; Pirani, F.A.E., Applicable differential geometry, (1986), Cambridge University Press · Zbl 0606.53001
[16] Di Carlo, A.; Nardinocchi, P., On the torsion of soft cylindrical shells, () · Zbl 1100.74583
[17] Dill, E.H., Kirchhoff’s theory of rods, Arch. hist. exact sci., 44, 1-23, (1992) · Zbl 0762.01012
[18] Ericksen, J.L.; Truesdell, C., Exact theory of stress and strain in rods and shells, Arch. ration. mech. anal., 1, 295-323, (1958) · Zbl 0081.39303
[19] Hodges, D.H., A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams, Internat. J. solids structures, 26, 1253-1273, (1990) · Zbl 0717.73095
[20] Naghdi, P.M., Finite deformations of elastic rods and shells, (), 47-103
[21] Nardinocchi, P.; Teresi, L.; Tiero, A., A direct theory of affine bodies, Internat. J. engrg. sci., 38, 865-878, (2000) · Zbl 1210.74011
[22] Quadrelli, M.B.; Atluri, S.N., Mixed variational principles in space and time for elastodynamics analysis, Acta mech., 136, 193-209, (1999) · Zbl 0939.74010
[23] Reilly, O.R., On constitutive relations for elastic rods, Internat. J. solids structures, 35, 1009-1024, (1998) · Zbl 0931.74042
[24] Rizzi, N.; Tatone, A., Nonstandard models for thin-walled beams with a view to applications, J. appl. mech., 63, 399-403, (1996) · Zbl 0878.73030
[25] Rubin, M.B., Restrictions on nonlinear constitutive relations for elastic rods, J. elasticity, 44, 9-36, (1996) · Zbl 0881.73055
[26] Simo, J.C., A finite strain beam formulation. the three-dimensional dynamic problem. part I, Comput. methods appl. mech. engrg., 49, 55-70, (1985) · Zbl 0583.73037
[27] Volterra, E., The equations of motions for curved and twisted elastic bar deduced by the use of the “method of internal constraints”, Ing. arch., 24, 392-400, (1956) · Zbl 0072.19501
[28] Warner, F.W., Foundations of differentiable manifolds and Lie groups, (1983), Springer-Verlag · Zbl 0516.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.