×

zbMATH — the first resource for mathematics

An \(N=2\) dual pair and a phase transition. (English) Zbl 1003.81525
Summary: We carefully analyze the \(N=2\) dual pair of string theories in four dimensions introduced by Ferrara, Harvey, Strominger and Vafa. The analysis shows that a second discrete degree of freedom must be switched on in addition to the known “Wilson line” to achieve a non-perturbatively consistent theory. We also identify the phase transition this model undergoes into another dual pair via a process analogous to a conifold transition. This provides the first known example of a phase transition which is understood from both the type II and the heterotic string picture.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32G81 Applications of deformations of analytic structures to the sciences
32J81 Applications of compact analytic spaces to the sciences
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Witten, E., Nucl. phys. B, 443, 85, (1995)
[2] Hull, C.; Townsend, P., Nucl. phys. B, 438, 109, (1995)
[3] Duff, M., Nucl. phys. B, 442, 47, (1995)
[4] Aspinwall, P.S.; Morrison, D.R., Phys. lett. B, 355, 141, (1995)
[5] Kachru, S.; Vafa, C., Nucl. phys. B, 450, 69, (1995)
[6] A. Klemm, W. Lerche and P. Mayr, K 3-Fibrations and Heterotic-Type II String Duality, CERN 1995 preprint CERN-TH/95-165.
[7] C. Vafa and E. Witten, Dual String Pairs With N = 1 and N = 2 Supersymmetry in Four Dimensions, Harvard and IAS 1995 preprint HUTP-95/A 023. · Zbl 0957.81590
[8] S. Chaudhuri and J. Polchinski, Moduli Space of CHL Strings, ITP 1995 preprint NSF-ITP-95-50.
[9] P.S. Aspinwall, Some Relationships Between Dualities in String Theory, Cornell 1995 preprint CLNS-95/1359. · Zbl 0957.81599
[10] S. Chaudhuri and D. Lowe, Type IIA-Heterotic Duals with Maximal Supersymmetry, ITP 1995 preprint NSF-ITP-95-76.
[11] S. Ferrara, J. Harvey, A. Strominger and C. Vafa, Second Quantized Mirror Symmetry, CERN et al., 1995 preprint CERN-TH 95/131.
[12] Reid, M., Math. ann., 278, 329, (1987)
[13] Green, P.; Hübsch, T., Phys. rev. lett., 61, 1163, (1988)
[14] Strominger, A., Nucl. phys. B, 451, 96, (1995)
[15] Greene, B.R.; Morrison, D.R.; Strominger, A., Nucl. phys. B, 451, 109, (1995)
[16] G. Aldazabal, A. Font, L.E. Ibáẽz and F. Quevedo, Chains of N = 2, D = 4 Heterotic/Type II Duals CERN et al., 1995 preprint CERN-TH/95-270.
[17] Candelas, P.; Green, P.; Hübsch, T., Nucl. phys. B, 330, 49, (1990)
[18] Morrison, D.R., Through the looking Glass, (), to appear · Zbl 0935.32020
[19] Vafa, C.; Witten, E., J. geom. phys., 15, 189, (1995)
[20] P.S. Aspinwall and D.R. Morrison, Stable Singularities in String Theory, Cornell and Duke 1995 preprint CLNS-95/1325, DUKE-TH-95-89, appendix by M. Gross, to appear in Commun. Math. Phys.
[21] Vafa, C., Nucl. phys. B, 273, 592, (1986)
[22] Bott, R.; Tu, L.W., Differential forms in algebraic topology, (1982), Springer New York · Zbl 0496.55001
[23] Aspinwall, P.S.; Morrison, D.R., Phys. lett. B, 334, 79, (1994)
[24] Milne, J., Étale cohomology, (1980), Princeton Univ. Press Princeton · Zbl 0433.14012
[25] P.S. Aspinwall and D.R. Morrison, String Theory on K 3 Surfaces, Duke and IAS 1994 preprint DUK-TH-94-68, IASSNS-HEP-94/23, to appear in Essays on Mirror Manifolds 2.
[26] Narain, K.S., Phys. lett. B, 169, 41, (1986)
[27] Narain, K.S.; Sarmadi, M.H.; Vafa, C., Nucl. phys. B, 288, 551, (1987)
[28] Aspinwall, P.S., Phys. lett. B, 357, 329, (1995)
[29] E. Witten, Some Comments on String Dynamics, IAS 1995 preprint IASSNS-HEP-95-63.
[30] Seiberg, N.; Witten, E., Nucl. phys. B, 426, 19, (1994)
[31] P.S. Aspinwall and D.R. Morrison, Mirror Symmetry and the Moduli Space of K 3 Surfaces, in preparation.
[32] Barth, W.; Peters, C.; van de Ven, A., Compact complex surfaces, (1984), Springer Berlin · Zbl 0718.14023
[33] Morrison, D., Duke math. J., 48, 197, (1981)
[34] Shah, J., Math. ann., 256, 475, (1981)
[35] Voisin, C., Miroirs et involutions sur LES surfaces K3, (), 273-323 · Zbl 0818.14014
[36] Borcea, C., K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, (1994), Rider College, preprint
[37] Nikulin, V.V., Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, (), 654-671 · Zbl 0671.22006
[38] Aspinwall, P.S.; Greene, B.R., Nucl. phys. B, 437, 205, (1995)
[39] S. Kachru et al., Non-perturbative Results on the Point Particle Limit of N = 2 Heterotic String, Harvard 1995 preprint HUTP-95/A 032. · Zbl 1003.81524
[40] M. Billó et al., A Search for Non-Perturbative Dualities of Local N = 2 Yang Mills Theories from Calabi-Yau Threefolds, CERN et al., 1995 preprint CERN-TH 95/140.
[41] V. Kaplunovksy, J. Louis and S. Theisen, Aspects of Duality in N = 2 String Vacua, Munich 1995 preprint LMU-TPW 95-9.
[42] G.L. Cardoso, D. Lüst and T. Mohaupt, Non-Perturbative Monodromies in N = 2 Heterotic String Vacua, Humboldt 1995 preprint HUB-IEP-95/12. · Zbl 0925.81159
[43] I. Antoniadis and H. Partouche, Exact Monodromy Group of N = 2 Heterotic Superstring, École Polytechnique 1995 preprint CPTH-RR 370.0895.
[44] Seiberg, N.; Witten, E., Nucl. phys. B, 431, 484, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.