zbMATH — the first resource for mathematics

200 years of least squares method. (English) Zbl 1003.01008
The title of this paper, apparently written for nonspecialists, bespeaks the quality of its language. The authors dwell on the re-discovery of the small planet Ceres after Gauss, by means of scarce observations, had calculated its orbit; describe Gauss’ first justification of the method of least squares; list other, partly post-Gaussian developments; and illustrate the application of the method, in particular to the estimation of the precision of Leonardo da Vinci’s drawing of a regular polyhedron.
The authors use the (seemingly dated) misnomer “Gauss-Markov theorem” and drop a few careless statements.

01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
Full Text: DOI
[1] Bjo\"rck, A \ring .: Numerical methods for least squares problems , 408pp., SIAM 1996. · Zbl 0847.65023
[2] Buḧler, W.K.: GAUSS, eine biographische Studie , Springer Verlag, 1987.
[3] Collins II, G.W.: The Foundation of celestial mechanics , Astronomy and Astrophysics Series, vol.16, Pachart Publishing House, Tuscon, 1989.
[4] Danjon, A.: Astronomie geńeŕale , Albert Blanchard, Paris, Seconde e\'d., 1986.
[5] Deuflhard, P.: Newton methods for nonlinear problems. Affine invariance and adaptive algorithms , to appear, Springer Verlag, 2002.
[6] Field, J.V.: Rediscovering the Archimedean polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Du\"rer, Daniele Barbaro, and Johannes Kepler, Arch. History Exact Sc. , 50 (1996), 241-289. · Zbl 0879.01008
[7] Funk, M. & Minor, H.-E.: Eislawinen in den Alpen: Erfahrungen mit Schutzmassnahmen und Fruḧerken- nungsmethoden, Wasserwirtschaft vol. 91 (2001), 362-368.
[8] Gauss, C.F.: Summarische U \" bersicht der zur Bestimmung der Bahnen der beiden neuen Hauptplaneten angewandten Methoden , Monatliche Correspondenz, herausgeg. Freiherr von Zach, Sept. 1809, Werke, vol. 6, 148-165.
[9] Gauss, C.F.: Theoria motus corporum coelestium , Perthes et Besser, Hamburgi (1809), Werke vol. 7, 1-288.
[10] Gauss, C.F.: Theoria combinationis observationum erronibus minimis obnoxiae , Pars Prior et Pars Post., Comm. Soc. Reg. Scient. Gott. 5, (1823), Werke, vol. 4, 1-26; 27-53; Supplementum Comm. Soc. Reg. Scient. Gott. 6, (1828), Werke, vol. 4, 55-93.
[11] Gauss, C.F.: Elliptische Bahnbestimmung , aus Gauss’ Nachlass, Werke, vol. 11, 221-252.
[12] Goldstine, H.H.: A history of numerical analysis from the 16th through the 19th century , Springer Verlag, 1977. · Zbl 0402.01005
[13] Letze, O. & Buchsteiner, T.: Leonardo da Vinci, scientist inventor artist , Exhibition Catalog 1999, Verlag Gerd Hatje, Ostfildern-Ruit, Germany.
[14] Pearson, K.: On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Phil. Mag. (5) 50 (1900), 157-175; corr. Phil. Mag. (6) 1 (1901), 670-671. · JFM 31.0238.04
[15] Plackett, R.L.: Studies in the history of probability and statistics. XXIX, The discovery of the method of least squares, Biometrika 59 (1972), 239-251. · Zbl 0274.01024
[16] Stewart, G.W.: Gauss, Theory of the combination of observations least subject to errors, bilingual edition of [10] with an Afterword , Classics in Appl. Math., SIAM 1995.
[17] Stigler, S.M.: Gauss and the invention of least squares, The Annals of Stat. 9 (1981), 465-474. · Zbl 0477.62001 · doi:10.1214/aos/1176345451
[18] Teets, D. & Whitehead, K.: The discovery of Ceres: How Gauss became famous, Math. Magazine 72 (1999), 83-93. · Zbl 1005.01007 · doi:10.2307/2690592
[19] Freiherr von Zach: Fortgesetzte Nachrichten u\"ber den la\"ngst vermutheten neuen Haupt-Planeten unseres Sonnen-Systems , in Gauss Werke, vol. 6, 199-204.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.