×

zbMATH — the first resource for mathematics

Strong coupling singularities and enhanced non-abelian gauge symmetries in \(N=2\) string theory. (English) Zbl 1002.81536
Summary: We study a class of extremal transitions between topological distinct Calabi-Yau manifolds which have an interpretation in terms of the special massless states of a type II string compactification. In those cases where a dual heterotic description exists the exceptional massless states are due to genuine strong (string-) coupling effects. A new feature is the appearance of enhanced non-abelian gauge symmetries in the exact nonperturbative theory.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32J81 Applications of compact analytic spaces to the sciences
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Seiberg, N.; Witten, E., Nucl. phys. B, 426, 19, (1994)
[2] Klemm, A.; Lerche, W.; Theisen, S.; Yankielowicz, S.; Argyres, P.; Faraggi, A., Phys. lett. B, Phys. rev. lett., 74, 3931, (1995)
[3] Strominger, A., Nucl. phys. B, 451, 96, (1995)
[4] Greene, B.; Morrison, D.; Strominger, A., Nucl. phys. B, 451, 109, (1995)
[5] Kachru, S.; Vafa, C., Nucl. phys. B, 450, 69, (1995)
[6] Ferrara, S.; Harvey, J.; Strominger, A.; Vafa, C., Phys. lett. B, 361, 59, (1995)
[7] S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, hep-th/9508155.
[8] P. Greene and T. Hübsch, Phys. Rev. Lett. 61 1163;
[9] G. Aldazabal, A. Font, L.E. Ibáñez and F. Quevedo, hep-th/9510093.
[10] Work in progress.
[11] Candelas, P.; De la Ossa, X.; Font, A.; Katz, S.; Morrison, D., Nucl. phys. B, 416, 481, (1994)
[12] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S.T., Commun. math. phys., 167, 301, (1995)
[13] Klemm, A.; Lerche, W.; Mayr, P., Phys. lett. B, 357, 313, (1995)
[14] Kaplunovsky, V.; Louis, J.; Theisen, S.; Antoniadis, I.; Gava, E.; Narain, K.; Taylor, T., Phys. lett. B, Nucl. phys. B, 455, 109, (1995)
[15] Vafa, C., Nucl. phys. B, 477, 262, (1995)
[16] Bershadsky, M.; Ceccotti, S.; Ooguri, H.; Vafa, C.; Bershadsky, M.; Ceccotti, S.; Ooguri, H.; Vafa, C., Nucl. phys. B, Commun. math. phys., 165, 311, (1994), (Appendix of S. Katz)
[17] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S.T., Nucl. phys. B, 433, 501, (1995)
[18] Berglund, P.; Katz, S.; Klemm, A., Nucl. phys. B, 456, 153, (1995)
[19] S. Hosono, B.H. Lian and S.-T. Yau, alg-geom/9511001.
[20] Becker, K.; Becker, M.; Strominger, A., Nucl. phys. B, 456, 130, (1995)
[21] C. Vafa and E. Witten, hep-th/9507050.
[22] P. Aspinwall and J. Louis, hep-th/9510234.
[23] B. Hunt and R. Schimmrigk, hep-th/9512138;; M. Lynker and R. Schmmrigk, hep-th/9511058.
[24] P. Aspinwall, hep-th/9510142.
[25] Fulton, W., Introduction to toric varieties, (1993), Princeton Univ. Press Princeton, NJ, see e.g.
[26] Aspinwall, P.; Greene, B.; Morrison, D., Nucl. phys. B, 420, 184, (1994)
[27] M. Bershadsky, V. Sadov and C. Vafa, hep-th/9510225.
[28] Dais, D.I., Doctorial thesis, (1994), preprint MPI/94-62.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.