×

Thermal buckling of cross-ply laminated composite beams. (English) Zbl 1002.74035

Summary: We analyze thermal buckling of thick, moderately thick and thin cross-ply laminated beams subjected to uniform temperature distribution. Exact analytical solutions of refined beam theories are used to obtain the critical buckling temperature of cross-ply beams with various boundary conditions. The state space concept in conjunction with Jordan canonical form are then exploited to solve exactly the governing equations of thermal buckling problems. Finally, we discuss the effects of length-to-thickness ratio, modulus ratio, thermal expansion coefficient ratio, various boundary conditions and number of layers on the critical buckling temperature.

MSC:

74G60 Bifurcation and buckling
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F05 Thermal effects in solid mechanics
74E30 Composite and mixture properties
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Biswas, P.: Thermal buckling of orthotropic plates. ASME, J. Appl. Mech.43, pp. 361-363 (1976). · Zbl 0342.73048
[2] Stavsky, Y.: Thermoelastic stability of laminated orthotropic circular plates. Acta Mech.22, 31-51 (1975). · Zbl 0326.73040
[3] Chen, L. W., Chen, L. Y.: Thermal buckling of laminated composite plates. J. Thermal Stresses10, 345-356 (1987).
[4] Chen, L. W., Chen, L. Y.: Thermal buckling of laminated cylindrical plates. Composite Struct8, 189-205 (1987).
[5] Tauchert, T. R., Huang, N. N.: Thermal buckling of symmetric angle-ply laminated plates, Proc. 4th Int. Conf. On Composite Structures, pp. 1424-1435. London: Elsevier Applied Science Publishers 1987.
[6] Tauchert, T. R.: Thermal buckling of thick antisymmetric angle-ply laminates. J. Thermal Stresses10, 113-124 (1987).
[7] Tauchert, T. R.: Thermally induced flexure, buckling and vibration of plates. Appl. Mech. Rev.44, 347-360 (1991).
[8] Tauchert, T. R., Huang, N. N.: Thermal buckling of clamped symmetric laminated plates. J. Thin-Walled Struct.13, 259-273 (1992). · Zbl 0786.73032
[9] Chang, J. S.: FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high-order displacement theory. Comp. Struct.37, 925-946 (1990). · Zbl 0726.73073
[10] Yang, I. H., Shieh, J. A.: Generic thermal buckling of initially stressed antisymmetric cross-ply thick laminates. Int. J. Solids Structures.24, 1059-1070 (1988). · Zbl 0636.73023
[11] Prabhu, M. R., Dhanaraj, R.: Thermal buckling of laminated composite plates. Comp. Struct.53, 1193-1204 (1994). · Zbl 0875.73064
[12] Ziegler, F., Rammerstorfer, F. G.: Thermoelastic stability. In: Thermal Stresses III (Hetnarski, R. B., ed.), 107-189, North-Holland 1989. · Zbl 0718.73011
[13] Ashwell, D. G.: Nonlinear problems. In: Handbook of Engineering Mechanics (Flugge, W., ed.), 45-97, New York: McGraw-Hill 1962. · Zbl 0111.21503
[14] Gatewood, B. E.: Thermal Stresses. New York: McGraw-Hill 1957. · Zbl 0077.38101
[15] Williams, M. L.: Large deflection analysis for pressure and heating. J. Appl. Mech.25, 251-258 (1958). · Zbl 0081.18807
[16] Alblas, J. B.: Some aspects of thermo-elastic stability. Appendix to Kovalenko, A. D.: Thermoelasticity. Groningen: Wolters-Noordhoff 1969.
[17] Boley, B. A., Weiner, J. H.: Theory of thermal stresses. New York: Wiley 1960. · Zbl 0095.18407
[18] Khdeir, A. A., Reddy, J. N.: Free vibration of cross-ply laminated beams with arbitrary boundary conditions. Int. J. Engng. Sci.32, 1971-1980 (1994). · Zbl 0899.73264
[19] Khdeir, A. A.: Dynamic response of antisymmeric cross-ply laminated composite beams with arbitrary boundary conditions. Int. J. Engng. Sci.34, 9-19 (1996). · Zbl 0900.73380
[20] Khdeir, A. A., Reddy, J. N.: An exact solution for the bending of thin and thick cross-ply laminated beams. Composite Struct.37, 195-203 (1997).
[21] Khdeir, A. A., Reddy, J. N.: Jordan canonical form solution for thermally induced deformations of cross-ply laminated composite beams. J. Thermal Stresses22, 331-346 (1999).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.