zbMATH — the first resource for mathematics

A new approach to abstract syntax with variable binding. (English) Zbl 1001.68083
Summary: The permutation model of set theory with atoms (FM-sets), devised by Fraenkel and Mostowski in the 1930s, supports notions of ‘name-abstraction’ and ‘fresh name’ that provide a new way to represent, compute with, and reason about the syntax of formal systems involving variable-binding operations. Inductively defined FM-sets involving the name-abstraction set former (together with Cartesian product and disjoint union) can correctly encode syntax modulo renaming of bound variables. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated notion of structural recursion for defining syntax-manipulating functions (such as capture avoiding substitution, set of free variables, etc.) and a notion of proof by structural induction, both of which remain pleasingly close to informal practice in computer science.

68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
03E99 Set theory
18B20 Categories of machines, automata
Full Text: DOI