×

zbMATH — the first resource for mathematics

A steady-state capturing method for hyperbolic systems with geometrical source terms. (English) Zbl 1001.35083
The paper deals with the numerical approximation of steady state solutions of hyperbolic systems with geometrical source terms. Thereby, standard Godunov or Roe-type upwind methods are employed and the source terms are evaluated at the cell interfaces instead of the cell averages. The performance and accuracy of the method is confirmed by numerical experiments.

MSC:
35L65 Hyperbolic conservation laws
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Bernudez and M.E. Vazquez , Upwind methods for hyperbolic conservation laws with source terms . Comput. & Fluids 23 ( 1994 ) 1049 - 1071 . Zbl 0816.76052 · Zbl 0816.76052 · doi:10.1016/0045-7930(94)90004-3
[2] R. Botchorishvili , B. Perthame and A. Vasseur , Equilibrium schemes for scalar conservation laws with stiff sources . Math. Comp. (to appear). MR 1933816 | Zbl 1017.65070 · Zbl 1017.65070 · doi:10.1090/S0025-5718-01-01371-0
[3] A. Chinnayya and A.Y. Le Roux , A new general Riemann solver for the shallow-water equations with friction and topography . Preprint ( 1999 ).
[4] T. Gallouët , J.-M. Hérard and N. Seguin , Some approximate Godunov schemes to compute shallow-water equations with topography . AIAA J. (to appear 2001). MR 1966639 · Zbl 1084.76540
[5] S.K. Godunov , Finite difference schemes for numerical computation of solutions of the equations of fluid dynamics . Math. USSR-Sb. 47 ( 1959 ) 271 - 306 . · Zbl 0171.46204
[6] L. Gosse , A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms . Comput. Math. Appl. 39 ( 2000 ) 135 - 159 . Zbl 0963.65090 · Zbl 0963.65090 · doi:10.1016/S0898-1221(00)00093-6
[7] L. Gosse , A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms . M\(^{\,3}\)AS (to appear). MR 1820677 | Zbl 1018.65108 · Zbl 1018.65108 · doi:10.1142/S021820250100088X
[8] L. Gosse and A.-Y. Le Roux , A well-balanced scheme designed for inhomogeneous scalar conservation laws . C. R. Acad. Sci. Paris Sér. I Math. 323 ( 1996 ). 543 - 546 Zbl 0858.65091 · Zbl 0858.65091
[9] J.M. Greenberg and A.-Y. Le Roux , A well-balanced scheme for the numerical processing of source terms in hyperbolic equations . SIAM J. Numer. Anal. 33 1 - 16 1996. Zbl 0876.65064 · Zbl 0876.65064 · doi:10.1137/0733001
[10] J.M. Greenberg , A.-Y. Le Roux , R. Baraille and A. Noussair , Analysis and approximation of conservation laws with source terms . SIAM J. Numer. Anal. 34 ( 1997 ) 1980 - 2007 . Zbl 0888.65100 · Zbl 0888.65100 · doi:10.1137/S0036142995286751
[11] S. Jin and M. Katsoulakis , Hyperbolic systems with supercharacteristic relaxations and roll waves . SIAM J. Appl. Math. 61 ( 2000 ) 271 - 292 (electronic). Zbl 0988.35107 · Zbl 0988.35107 · doi:10.1137/S0036139999350780
[12] S. Jin and Y.J. Kim , On the computation of roll waves . ESAIM: M2AN 35 ( 2001 ) 463 - 480 . Numdam | Zbl 1001.35084 · Zbl 1001.35084 · doi:10.1051/m2an:2001123 · numdam:M2AN_2001__35_3_463_0 · eudml:197563
[13] C. Kranenburg , On the evolution of roll waves . J. Fluid Mech. 245 ( 1992 ) 249 - 261 . Zbl 0765.76011 · Zbl 0765.76011 · doi:10.1017/S0022112092000442
[14] R.J. LeVeque , Numerical methods for conservation laws . Birkhäuser, Basel ( 1992 ). MR 1153252 | Zbl 0847.65053 · Zbl 0847.65053
[15] R.J. LeVeque , Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm . J. Comput. Phys. 146 ( 1998 ) 346 - 365 . Zbl 0931.76059 · Zbl 0931.76059 · doi:10.1006/jcph.1998.6058
[16] P.L. Roe , Approximate Riemann solvers, parameter vectors, and difference schemes . J. Comput. Phys. 43 ( 1981 ) 357 - 372 . Zbl 0474.65066 · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[17] P.L. Roe , Upwind differenced schemes for hyperbolic conservation laws with source terms , in Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop, St. Étienne, 1986, Lect. Notes Math. Springer, Berlin, 1270 ( 1987 ) 41 - 45 . Zbl 0626.65086 · Zbl 0626.65086
[18] M.E. Vazquez-Cendon , Improved treatment of source terms in upwind schemes for shallow water equations in channels with irregular geometry . J. Comput. Phys. 148 ( 1999 ) 497 - 526 . Zbl 0931.76055 · Zbl 0931.76055 · doi:10.1006/jcph.1998.6127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.