×

zbMATH — the first resource for mathematics

Open strings. (English) Zbl 0999.83056
Summary: This review is devoted to open strings, and in particular to the often surprising features of their spectra. It follows and summarizes developments that took place mainly at the University of Rome “Tor Vergata” over the last decade, and centred on world-sheet aspects of the constructions now commonly referred to as “orientifolds”. Our presentation aims to bridge the gap between the world-sheet analysis, that first exhibited many of the novel features of these systems, and their geometric description in terms of extended objects, D-branes and \(O\)-planes, contributed by many other colleagues, and most notably by J. Polchinski. We therefore proceed through a number of prototype examples, starting from the bosonic string and moving on to 10-dimensional fermionic strings and their toroidal and orbifold compactifications, in an attempt to guide the reader in a self-contained journey to the more recent developments related to the breaking of supersymmetry.

MSC:
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Veneziano, G., Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo cimento A, 57, 190, (1968)
[2] Virasoro, M.A.; Shapiro, J.A., Narrow-resonance model with Regge behavior for π-π scattering, Phys. rev., Phys. rev., 179, 1345, (1969)
[3] Koba, Z.; Nielsen, H.B.; Koba, Z.; Nielsen, H.B., Manifestly crossing invariant parametrization of N meson amplitude, Nucl. phys. B, Nucl. phys. B, 12, 517, (1969)
[4] Neveu, A.; Schwarz, J.H.; Neveu, A.; Schwarz, J.H.; Neveu, A.; Schwarz, J.H.; Thorn, C.B.; Ramond, P.; Ramond, P., Dual theory for free fermions, Nucl. phys. B, Phys. rev. D, Phys. lett. B, Nuovo cimento A, Phys. rev. D, 3, 2415, (1971)
[5] M. Jacob (Ed.), Dual Theory, Physics Reports Reprint; Vol. I, North-Holland, Amsterdam, 1974;
[6] Scherk, J.; Schwarz, J.H.; Yoneya, T., Connection of dual models to electrodynamics and gravidynamics, Nucl. phys. B, Prog. theor. phys., 51, 1907, (1974)
[7] Green, M.B.; Schwarz, J.H., Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory, Phys. lett. B, 149, 117, (1984)
[8] Feynman, R.P.; Dewitt, B.S.; ’t Hooft, G.; Veltman, M.J.; Goroff, M.H.; Sagnotti, A.; Goroff, M.H.; Sagnotti, A.; van de Ven, A.E., Two loop quantum gravity, Acta phys. polon., Phys. rev., Ann. poincare phys. theor. A, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, 378, 309, (1992)
[9] For a recent review see, for instance, B.R. Greene, String theory on Calabi-Yau manifolds, arXiv:hep-th/9702155.
[10] An unsurpassed book on many aspects of the subject, and in particular on Calabi-Yau compactifications, is M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, 2 Vols., Cambridge University Press, Cambridge, 1988;; More recent books are D. Lüst, S. Theisen, Lectures on String Theory, Lecture Notes in Physics, Vol. 346, 1989, p. 1;; E. Kiritsis, Introduction to Superstring Theory, Leuven University Press, Leuven, 1998 [arXiv:hep-th/9709062], and the more comprehensive J. Polchinski, String Theory, 2 Vols., Cambridge University Press, Cambridge, 1999.
[11] For reviews and collections of reprints see, for instance, P. Van Nieuwenhuizen, Supergravity, Phys. Rep. 68 (1981) 189;; S. Ferrara, Supersymmetry, 2 Vols., World Scientific, Singapore, 1987;; A. Salam, E. Sezgin, Supergravity in Diverse Dimensions, 2 Vols., World Scientific, Singapore, 1989.
[12] Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R.; Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R.; Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R., Heterotic string theory. 2. the interacting heterotic string, Phys. rev. lett., Nucl. phys. B, Nucl. phys. B, 267, 75, (1986)
[13] The possibility of cancelling gauge and gravitational anomalies with the E_{8}×E8 gauge group was first stressed in J. Thierry-Mieg, Remarks concerning the E8×E8 and D16 string theories, Phys. Lett. B 156 (1985) 199.
[14] P. Goddard, D.I. Olive, Algebras, lattices and strings, DAMTP-83/22, Talks given at the Workshop on Vertex Operators in Mathematics and Physics, Berkeley, CA;; For reviews see, for instance, V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1985;
[15] Paton, J.E.; Chan, H.M., Generalized veneziano model with isospin, Nucl. phys. B, 10, 516, (1969)
[16] J.H. Schwarz, Gauge groups for type I superstrings, CALT-68-906-REV, Presented at the Sixth Johns Hopkins Workshop on Current Problems in High-Energy Particle Theory, Florence, Italy, June 2-4, 1982;
[17] An interesting proposal for a non-perturbative realization of exceptional gauge groups, in the spirit of string dualities, via multi-pronged strings, can be found in M.R. Gaberdiel, B. Zwiebach, Exceptional groups from open strings, Nucl. Phys. B 518 (1998) 151 [arXiv:hep-th/9709013]; · Zbl 1031.81606
[18] For reviews see, for instance, K.R. Dienes, String theory and the path to unification: a review of recent developments, Phys. Rep. 287 (1997) 447 [arXiv:hep-th/9602045];; F. Quevedo, Lectures on superstring phenomenology, arXiv:hep-th/9603074;; L.E. Ibáñez, New perspectives in string phenomenology from dualities, arXiv:hep-ph/9804236. · Zbl 0957.81618
[19] Gliozzi, F.; Scherk, J.; Olive, D.I.; Gliozzi, F.; Scherk, J.; Olive, D.I., Supersymmetry, supergravity theories and the dual spinor model, Phys. lett. B, Nucl. phys. B, 122, 253, (1977)
[20] Cardy, J.L., Operator content of two-dimensional conformally invariant theories, Nucl. phys. B, 270, 186, (1986) · Zbl 0689.17016
[21] Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. phys. B, 241, 333, (1984) · Zbl 0661.17013
[22] Friedan, D.; Martinec, E.J.; Shenker, S.H., Conformal invariance, supersymmetry and string theory, Nucl. phys. B, 271, 93, (1986)
[23] For reviews see, for instance, P. Ginsparg, Applied conformal field theory, HUTP-88-A054, Lectures given at Les Houches Summer School in Theoretical Physics, Les Houches, France, June 28-August 5, 1988;; J.L. Cardy, Conformal invariance and statistical mechanics, Lectures given at Les Houches Summer School in Theoretical Physics, Les Houches, France, June 28-August 5, 1988;; C. Itzykson, J.-M. Drouffe, Statistical Field Theory, 2 Vols., Cambridge University Press, Cambdridge, 1989.
[24] Shapiro, J.A., Loop graph in the dual tube model, Phys. rev. D, 5, 1945, (1972)
[25] Antoniadis, I.; Bachas, C.P.; Kounnas, C., Four-dimensional superstrings, Nucl. phys. B, 289, 87, (1987)
[26] For four-dimensional model building with free fermions see I. Antoniadis, J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, The flipped SU(5)×U(1) string model revamped, Phys. Lett. B 231 (1989) 65;
[27] These works are part of a very interesting effort aimed at connecting bosonic and fermionic strings, originally stimulated by P.G. Freund, Superstrings from twentysix-dimensions?, Phys. Lett. B 151 (1985) 387;; Recent work extending these considerations to open strings is described in F. Englert, L. Houart, A. Taormina, Brane fusion in the bosonic string and the emergence of fermionic strings, JHEP 0108 (2001) 013 [arXiv:hep-th/0106235];; F. Englert, L. Houart, A. Taormina, The bosonic ancestor of closed and open fermionic strings, arXiv:hep-th/0203098. · Zbl 0942.53510
[28] Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E.; Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E., Strings on orbifolds. 2, Nucl. phys. B, Nucl. phys. B, 274, 285, (1986)
[29] Narain, K.S.; Narain, K.S.; Sarmadi, M.H.; Witten, E., A note on toroidal compactification of heterotic string theory, Phys. lett. B, Nucl. phys. B, 279, 369, (1987)
[30] Green, M.B.; Schwarz, J.H., Infinity cancellations in SO(32) superstring theory, Phys. lett. B, 151, 21, (1985)
[31] Douglas, M.R.; Grinstein, B., Dilaton tadpole for the open bosonic string, Phys. lett. B, 183, 52, (1987), [Erratum Phys. Lett. B 187 (1987) 442]
[32] Weinberg, S., Cancellation of one loop divergences in SO(8192) string theory, Phys. lett. B, 187, 278, (1987)
[33] Marcus, N.; Sagnotti, A., Group theory from ‘quarks’ at the ends of strings, Phys. lett. B, 188, 58, (1987)
[34] Bianchi, M.; Sagnotti, A., The partition function of the SO(8192) bosonic string, Phys. lett. B, 211, 407, (1988)
[35] A more modern perspective on this result is provided in G. Aldazabal, D. Badagnani, L.E. Ibáñez, A.M. Uranga, Tadpole versus anomaly cancellation in D=4,6 compact IIB orientifolds, JHEP 9906 (1999) 031 [arXiv:hep-th/9904071];
[36] A. Sagnotti, Open strings and their symmetry groups, ROM2F-87-25, Talk presented at the Cargese Summer Institute on Non-Perturbative Methods in Field Theory, Cargese, France, July 16-30, 1987.
[37] Govaerts, J.; Govaerts, J.; Bern, Z.; Dunbar, D.C.; Bern, Z.; Dunbar, D.C., Four-dimensional type I superstrings with N<4 supergravity, Phys. lett. B, Int. J. mod. phys. A, Phys. rev. lett., Phys. lett. B, 242, 175, (1990)
[38] Hořava, P., Strings on world sheet orbifolds, Nucl. phys. B, 327, 461, (1989)
[39] Dai, J.; Leigh, R.G.; Polchinski, J.; Leigh, R.G., Dirac – born – infeld action from Dirichlet sigma model, Mod. phys. lett. A, Mod. phys. lett. A, 4, 2767, (1989)
[40] Hořava, P., Background duality of open string models, Phys. lett. B, 231, 251, (1989)
[41] Green, M.B., Pointlike states for type 2b superstrings, Phys. lett. B, 329, 435, (1994), [arXiv:hep-th/9403040]
[42] Pradisi, G.; Sagnotti, A., Open string orbifolds, Phys. lett. B, 216, 59, (1989)
[43] Harvey, J.A.; Minahan, J.A., Open strings on orbifolds, Phys. lett. B, 188, 44, (1987)
[44] Venturi, G.; Siegel, W.; Roy, S.M.; Singh, V., The quasiopen string, Nuovo cimento A, Nucl. phys. B, Phys. rev. D, 35, 1939, (1987)
[45] Bianchi, M.; Sagnotti, A., Open strings and the relative modular group, Phys. lett. B, 231, 389, (1989)
[46] Cardy, J.L., Boundary conditions, fusion rules and the Verlinde formula, Nucl. phys. B, 324, 581, (1989)
[47] Bianchi, M.; Sagnotti, A., On the systematics of open string theories, Phys. lett. B, 247, 517, (1990)
[48] Bianchi, M.; Sagnotti, A., Twist symmetry and open string Wilson lines, Nucl. phys. B, 361, 519, (1991)
[49] Sagnotti, A., A note on the green – schwarz mechanism in open string theories, Phys. lett. B, 294, 196, (1992), [arXiv:hep-th/9210127]
[50] Duff, M.J.; Minasian, R.; Witten, E.; Seiberg, N.; Witten, E.; Duff, M.J.; Lü, H.; Pope, C.N.; Duff, M.J.; Liu, J.T.; Lü, H.; Pope, C.N., Gauge dyonic strings and their global limit, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, 529, 137, (1998), [arXiv:hep-th/9711089] · Zbl 0964.83031
[51] Bianchi, M.; Pradisi, G.; Sagnotti, A., Toroidal compactification and symmetry breaking in open string theories, Nucl. phys. B, 376, 365, (1992)
[52] Kakushadze, Z.; Shiu, G.; Tye, S.H., Type IIB orientifolds with NS-NS antisymmetric tensor backgrounds, Phys. rev. D, 58, 086001, (1998), [arXiv:hep-th/9803141]
[53] Angelantonj, C., Comments on open-string orbifolds with a non-vanishing Bab, Nucl. phys. B, 566, 126, (2000), [arXiv:hep-th/9908064] · Zbl 0956.81075
[54] Bianchi, M.; Pradisi, G.; Sagnotti, A., Planar duality in the discrete series, Phys. lett. B, 273, 389, (1991)
[55] Fioravanti, D.; Pradisi, G.; Sagnotti, A., Sewing constraints and nonorientable open strings, Phys. lett. B, 321, 349, (1994), [arXiv:hep-th/9311183]
[56] Pradisi, G.; Sagnotti, A.; Stanev, Y.S.; Pradisi, G.; Sagnotti, A.; Stanev, Y.S., The open descendants of nondiagonal SU(2) WZW models, Phys. lett. B, Phys. lett. B, 356, 230, (1995), [arXiv:hep-th/9506014]
[57] For short reviews see A. Sagnotti, Y.S. Stanev, Open descendants in conformal field theory, Fortsch. Phys. 44 (1996) 585 [Nucl. Phys. Proc. Suppl. 55B (1996) 200] [arXiv:hep-th/9605042];
[58] A. Sagnotti, Some properties of open string theories, arXiv:hep-th/9509080; · Zbl 0925.81138
[59] Angelantonj, C., Non-tachyonic open descendants of the 0B string theory, Phys. lett. B, 444, 309, (1998), [arXiv:hep-th/9810214]
[60] Blumenhagen, R.; Font, A.; Lüst, D., Tachyon-free orientifolds of type 0B strings in various dimensions, Nucl. phys. B, 558, 159, (1999), [arXiv:hep-th/9904069] · Zbl 1068.81584
[61] Blumenhagen, R.; Font, A.; Lüst, D.; Blumenhagen, R.; Kumar, A.; Förger, K., On non-tachyonic \(ZN×ZM\) orientifolds of type 0B string theory, Nucl. phys. B, Phys. lett. B, Phys. lett. B, 469, 113, (1999), [arXiv:hep-th/9909010]
[62] Polchinski, J., Dirichlet-branes and ramond – ramond charges, Phys. rev. lett., 75, 4724, (1995), [arXiv:hep-th/9510017] · Zbl 1020.81797
[63] For reviews see, for instance: J.H. Schwarz, Lectures on superstring and M theory dualities, Nucl. Phys. Proc. Suppl. 55B (1997) 1 [arXiv:hep-th/9607201];; P.K. Townsend, Four lectures on M-theory, arXiv:hep-th/9612121. · Zbl 1044.81692
[64] Angelantonj, C.; Bianchi, M.; Pradisi, G.; Sagnotti, A.; Stanev, Y.S., Chiral asymmetry in four-dimensional open-string vacua, Phys. lett. B, 385, 96, (1996), [arXiv:hep-th/9606169]
[65] Kakushadze, Z.; Shiu, G.; Kakushadze, Z.; Shiu, G.; Kakushadze, Z.; Kakushadze, Z.; Shiu, G.; Tye, S.H.; Zwart, G.; Klein, M.; Rabadan, R.; Blumenhagen, R.; Görlich, L.; Körs, B.; Cvetic, M.; Plumacher, M.; Wang, J.; Blumenhagen, R.; Görlich, L.; Körs, B.; Pradisi, G.; Cvetic, M.; Langacker, P.; Cvetic, M.; Uranga, A.M.; Wang, J., Discrete Wilson lines in \(N=1D=4\) type IIB orientifoldsa systematic exploration for \(Z6\) orientifold, Phys. rev. D, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Jhep, Nucl. phys. B, Jhep, Jhep, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 595, 63, (2001), [arXiv:hep-th/0010091]
[66] F. Riccioni, A. Sagnotti, Self-dual tensors in six-dimensional supergravity, hep-th/9812042;; For a review, see F. Riccioni, Low-energy structure of six-dimensional open-string vacua, arXiv:hep-th/0203157, Ph.D. Thesis. · Zbl 0969.83543
[67] Scherk, J.; Schwarz, J.H., How to get masses from extra dimensions, Nucl. phys. B, 153, 61, (1979)
[68] Blum, J.D.; Dienes, K.R., Strong/weak coupling duality relations for non-supersymmetric string theories, Nucl. phys. B, 516, 83, (1998), [arXiv:hep-th/9707160] · Zbl 0920.53036
[69] Antoniadis, I.; Dudas, E.; Sagnotti, A., Supersymmetry breaking, open strings and M-theory, Nucl. phys. B, 544, 469, (1999), [arXiv:hep-th/9807011] · Zbl 0944.81028
[70] See also G. D’Appollonio, Non perturbative aspects of the String Theory (in Italian), Laurea Thesis, arXiv:hep-th/0111284. · Zbl 0958.81128
[71] C.A. Scrucca, M. Serone, M. Trapletti, Open string models with Scherk-Schwarz SUSY breaking and localized anomalies, arXiv:hep-th/0203190.
[72] Srednicki, M., IIB or not IIB, Jhep, 9808, 005, (1998), [arXiv:hep-th/9807138] · Zbl 0955.81037
[73] Aldazabal, G.; Uranga, A.M., Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems, Jhep, 9910, 024, (1999), [arXiv:hep-th/9908072] · Zbl 0957.81040
[74] Angelantonj, C.; Antoniadis, I.; D’Appollonio, G.; Dudas, E.; Sagnotti, A., Type I vacua with brane supersymmetry breaking, Nucl. phys. B, 572, 36, (2000), [arXiv:hep-th/9911081] · Zbl 0947.81124
[75] Angelantonj, C.; Blumenhagen, R.; Gaberdiel, M.R., Asymmetric orientifolds, brane supersymmetry breaking and non-BPS branes, Nucl. phys. B, 589, 545, (2000), [arXiv:hep-th/0006033] · Zbl 0991.81087
[76] Rohm, R.; Ferrara, S.; Kounnas, C.; Porrati, M.; Ferrara, S.; Kounnas, C.; Porrati, M.; Ferrara, S.; Kounnas, C.; Porrati, M.; Kounnas, C.; Porrati, M.; Ferrara, S.; Kounnas, C.; Porrati, M.; Zwirner, F.; Kounnas, C.; Rostand, B.; Antoniadis, I.; Kounnas, C.; Kiritsis, E.; Kounnas, C., Perturbative and non-perturbative partial supersymmetry breakingn=4 → N=2 → N=1, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, 503, 117, (1997), [arXiv:hep-th/9703059]
[77] Antoniadis, I.; Dudas, E.; Sagnotti, A., Brane supersymmetry breaking, Phys. lett. B, 464, 38, (1999), [arXiv:hep-th/9908023] · Zbl 0987.81551
[78] Bianchi, M.; Morales, J.F.; Pradisi, G., Discrete torsion in non-geometric orbifolds and their open-string descendants, Nucl. phys. B, 573, 314, (2000), [arXiv:hep-th/9910228] · Zbl 0947.81092
[79] Sugimoto, S., Anomaly cancellations in type I D9-\( D9\) system and the usp(32) string theory, Prog. theor. phys., 102, 685, (1999), [arXiv:hep-th/9905159]
[80] Witten, E., Some properties of O(32) superstrings, Phys. lett. B, 149, 351, (1984)
[81] C. Bachas, A way to break supersymmetry, arXiv:hep-th/9503030.
[82] Bianchi, M.; Stanev, Y.S., Open strings on the Neveu-Schwarz pentabrane, Nucl. phys. B, 523, 193, (1998), [arXiv:hep-th/9711069] · Zbl 1031.81590
[83] Witten, E., Small instantons in string theory, Nucl. phys. B, 460, 541, (1996), [arXiv:hep-th/9511030] · Zbl 0935.81052
[84] See also M. Larosa, Strings, branes and internal magnetic fields (in Italian), Laurea Thesis, arXiv:hep-th/0111187. · Zbl 1031.81579
[85] C. Angelantonj, A. Sagnotti, Type I vacua and brane transmutation, arXiv:hep-th/0010279. · Zbl 1031.81579
[86] Berkooz, M.; Douglas, M.R.; Leigh, R.G.; Balasubramanian, V.; Leigh, R.G., D-branes, moduli and supersymmetry, Nucl. phys. B, Phys. rev. D, 55, 6415, (1997), [hep-th/9611165]
[87] See, for instance, G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadan, A.M. Uranga, D=4 chiral string compactifications from intersecting branes, arXiv:hep-th/0011073;; R. Blumenhagen, B. Körs, D. Lüst, T. Ott, The standard model from stable intersecting brane world orbifolds, arXiv:hep-th/0107138;; L.E. Ibáñez, Standard model engineering with intersecting branes, arXiv:hep-ph/0109082. · Zbl 0989.81558
[88] Dudas, E., Theory and phenomenology of type I strings and M-theory, Class. quant. grav., 17, R41, (2000), [arXiv:hep-ph/0006190] · Zbl 1052.81582
[89] Y.S. Stanev, Two dimensional Conformal Field Theory on Open and Unoriented Surfaces, arXiv:hep-th/0112222.
[90] C. Angelantonj, Non-supersymmetric open string vacua, arXiv:hep-th/9907054;; C. Angelantonj, A note on non-supersymmetric open-string orbifolds with a quantized Bab, arXiv:hep-th/9909003;; M. Bianchi, Type I superstrings without D-branes, arXiv:hep-th/9702098;; M. Bianchi, Open strings and dualities, arXiv:hep-th/9712020;; G. Pradisi, Type-I vacua from non-geometric orbifolds, arXiv:hep-th/0101085;; G. Pradisi, A. Sagnotti, New developments in open string theories, arXiv:hep-th/9211084; · Zbl 1273.81189
[91] Polyakov, A.M.; Polyakov, A.M., Quantum geometry of fermionic strings, Phys. lett. B, Phys. lett. B, 103, 211, (1981)
[92] See, for instance, H. Farkas, I. Kra, Riemann surfaces, Springer, Berlin, 1980; · Zbl 0059.06901
[93] Alessandrini, V.; Alessandrini, V.; Amati, D.; Alvarez, O., Theory of strings with boundariesfluctuations, topology, and quantum geometry, Nuovo cimento A, Nuovo cimento A, Nucl. phys. B, 216, 125, (1983)
[94] Stilwell, J., Classical topology and combinatorial group theory, (1993), Springer Berlin
[95] G. Pradisi, unpublished, 1988.
[96] Deser, S.; Zumino, B.; Brink, L.; Di Vecchia, P.; Howe, P., A locally supersymmetric and reparametrization invariant action for the spinning string, Phys. lett. B, Phys. lett. B, 65, 471, (1976)
[97] Goddard, P.; Goldstone, J.; Rebbi, C.; Thorn, C.B., Quantum dynamics of a massless relativistic string, Nucl. phys. B, 56, 109, (1973)
[98] Brink, L.; Nielsen, H.B., A simple physical interpretation of the critical dimension of space – time in dual models, Phys. lett. B, 45, 332, (1973)
[99] For a review of the recent progress on this issue see, for instance, S.L. Shatashvili, On field theory of open strings, tachyon condensation and closed strings, arXiv:hep-th/0105076;; L. Rastelli, A. Sen, B. Zwiebach, Vacuum string field theory, arXiv:hep-th/0106010.
[100] Schwarz, J.H., Superstring theory, Phys. rep., 89, 223, (1982) · Zbl 0578.22027
[101] See, for instance, S. Lang, Algebra, Addison-Wesley, New York, 1971.
[102] Dorn, H.; Otto, H.J., Open bosonic strings in general background fields, Z. phys. C, 32, 599, (1986)
[103] Friedan, D.H.; Sen, A.; Sen, A.; Callan, C.G.; Martinec, E.J.; Perry, M.J.; Friedan, D.; Fradkin, E.S.; Tseytlin, A.A., Quantum string theory effective action, Ann. phys., Phys. rev. lett., Phys. rev. D, Nucl. phys. B, Nucl. phys. B, 261, 1, (1985)
[104] Fradkin, E.S.; Tseytlin, A.A., Nonlinear electrodynamics from quantized strings, Phys. lett. B, 163, 123, (1985) · Zbl 0967.81534
[105] Abouelsaood, A.; Callan, C.G.; Nappi, C.R.; Yost, S.A., Open strings in background gauge fields, Nucl. phys. B, 280, 599, (1987)
[106] See, for instance, C. Itzykson, J.B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980.
[107] See, for instance, E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927;; A. Erde’lyi (Ed.), Higher Transcendental Functions, 3 Vols., McGraw-Hill, New York, 1953;
[108] Schellekens, A.N.; Yankielowicz, S.; Fuchs, J.; Schellekens, B.; Schweigert, C., The resolution of field identification fixed points in diagonal coset theories, Nucl. phys. B, Nucl. phys. B, 461, 371, (1996), [arXiv:hep-th/9509105] · Zbl 0921.17013
[109] Dixon, L.J.; Harvey, J.A.; Seiberg, N.; Witten, E., Spin structures in string theory, Nucl. phys. B, Nucl. phys. B, 276, 272, (1986)
[110] For a review, see for instance, L. Alvarez-Gaumé, An introduction to anomalies, HUTP-85/A092, Lectures given at International School on Mathematical Physics, Erice, Italy, July 1-14, 1985.
[111] Verlinde, E., Fusion rules and modular transformations in 2D conformal field theory, Nucl. phys. B, 300, 360, (1988) · Zbl 1180.81120
[112] Witten, E., Toroidal compactification without vector structure, Jhep, 9802, 006, (1998), [arXiv:hep-th/9712028] · Zbl 0958.81065
[113] See A. Hanany, B. Kol, On orientifolds, discrete torsion, branes and M theory, JHEP 0006 (2000) 013 [arXiv:hep-th/0003025], and references therein. · Zbl 0989.81549
[114] Di Vecchia, P.; Frau, M.; Pesando, I.; Sciuto, S.; Lerda, A.; Russo, R., Classical p-branes from boundary state, Nucl. phys. B, 507, 259, (1997), [arXiv:hep-th/9707068] · Zbl 0925.81269
[115] For a review, see A. Lerda, R. Russo, Stable non-BPS states in string theory: a pedagogical review, Int. J. Mod. Phys. A 15 (2000) 771 [arXiv:hep-th/9905006].
[116] Volkov, D.V.; Akulov, V.P.; Samuel, S.; Wess, J.; Samuel, S.; Wess, J.; Samuel, S.; Wess, J., Secret supersymmetry, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 233, 488, (1984)
[117] G. Pradisi, F. Riccioni, Geometric couplings and brane supersymmetry breaking, arXiv:hep-th/0107090. · Zbl 0969.81619
[118] Dudas, E.; Mourad, J.; Blumenhagen, R.; Font, A., Dilaton tadpoles, warped geometries and large extra dimensions for non-supersymmetric strings, Phys. lett. B, Nucl. phys. B, 599, 241, (2001), [arXiv:hep-th/0011269] · Zbl 1097.81708
[119] Schwarz, J.H.; Witten, E., Anomaly analysis of brane-antibrane systems, Jhep, 0103, 032, (2001), [arXiv:hep-th/0103099]
[120] Dine, M.; Seiberg, N.; Witten, E., Fayet-Iliopoulos terms in string theory, Nucl. phys. B, 289, 589, (1987)
[121] Klebanov, I.R.; Tseytlin, A.A.; Klebanov, I.R.; Tseytlin, A.A., A non-supersymmetric large N CFT from type 0 string theory, Nucl. phys. B, Jhep, 9903, 015, (1999), [arXiv:hep-th/9901101] · Zbl 0965.81089
[122] For a review, see for instance, A. Giveon, M. Porrati, E. Rabinovici, Target space duality in string theory, Phys. Rep. 244 (1994) 77 [arXiv:hep-th/9401139].
[123] Ginsparg, P., Comment on toroidal compactification of heterotic superstrings, Phys. rev. D, 35, 648, (1987)
[124] Dabholkar, A.; Park, J., A note on orientifolds and F-theory, Phys. lett. B, 394, 302, (1997), [arXiv:hep-th/9607041]
[125] Angelantonj, C.; Bianchi, M.; Pradisi, G.; Sagnotti, A.; Stanev, Y.S., Comments on Gepner models and type I vacua in string theory, Phys. lett. B, 387, 743, (1996), [arXiv:hep-th/9607229]
[126] J. Polchinski, S. Chaudhuri, C.V. Johnson, Notes on D-branes, arXiv:hep-th/9602052;; J. Polchinski, TASI lectures on D-branes, arXiv:hep-th/9611050;; A. Dabholkar, Lectures on orientifolds and duality, arXiv:hep-th/9804208;; C.P. Bachas, Lectures on D-branes, arXiv:hep-th/9806199;; C.V. Johnson, D-brane primer, arXiv:hep-th/0007170.
[127] For a recent discussion of this issue see T. Dasgupta, M.R. Gaberdiel, M.B. Green, The type I D-instanton and its M-theory origin, JHEP 0008 (2000) 004 [arXiv:hep-th/0005211]. · Zbl 0989.81566
[128] Polchinski, J.; Witten, E., Evidence for heterotic-type I string duality, Nucl. phys. B, 460, 525, (1996), [arXiv:hep-th/9510169] · Zbl 1004.81526
[129] Sen, A.; Sethi, S., The mirror transform of type I vacua in six dimensions, Nucl. phys. B, 499, 45, (1997), [arXiv:hep-th/9703157] · Zbl 0934.81041
[130] Bianchi, M., A note on toroidal compactifications of the type I superstring and other superstring vacuum configurations with 16 supercharges, Nucl. phys. B, 528, 73, (1998), [arXiv:hep-th/9711201] · Zbl 0951.81034
[131] Keurentjes, A.; Keurentjes, A., Classifying orientifolds by flat n-gerbes, Phys. rev. D, Jhep, 0107, 010, (2001), [arXiv:hep-th/0106267]
[132] Angelantonj, C.; Blumenhagen, R., Discrete deformations in type I vacua, Phys. lett. B, 473, 86, (2000), [arXiv:hep-th/9911190] · Zbl 0959.81076
[133] For a review, see for instance, B. Greene, S.-T. Yau (Eds.), Mirror Symmetry II, American Mathematical Society, International Press, Providence, RI, 1997.
[134] Chaudhuri, S.; Hockney, G.; Lykken, J.D., Maximally supersymmetric string theories in D<10, Phys. rev. lett., 75, 2264, (1995), [arXiv:hep-th/9505054] · Zbl 1020.81763
[135] G. Pradisi, Geometrical construction of type I superstring vacua, arXiv:hep-th/9702189. · Zbl 1056.81558
[136] Kakushadze, Z.; Tye, S.H., Brane world, Nucl. phys. B, 548, 180, (1999), [arXiv:hep-th/9809147] · Zbl 0943.81036
[137] Hořava, P.; Witten, E.; Hořava, P.; Witten, E., Eleven-dimensional supergravity on a manifold with boundary, Nucl. phys. B, Nucl. phys. B, 475, 94, (1996), [arXiv:hep-th/9603142] · Zbl 0925.81180
[138] Fabinger, M.; Hořava, P., Casimir effect between world-branes in heterotic M-theory, Nucl. phys. B, 580, 243, (2000), [arXiv:hep-th/0002073] · Zbl 1071.81562
[139] Romans, L.J., Selfduality for interacting fieldscovariant field equations for six-dimensional chiral supergravities, Nucl. phys. B, 276, 71, (1986)
[140] For a review, see for instance, P.S. Aspinwall, K3 surfaces and string duality, arXiv:hep-th/9611137.
[141] Polchinski, J., Tensors from K3 orientifolds, Phys. rev. D, 55, 6423, (1997), [arXiv:hep-th/9606165]
[142] Gimon, E.G.; Polchinski, J., Consistency conditions for orientifolds and D-manifolds, Phys. rev. D, 54, 1667, (1996), [arXiv:hep-th/9601038]
[143] This decomposition was originally derived in unpublished work of the Tor Vergata group, as referred to in [69].
[144] Blumenhagen, R.; Wißkirchen, A., Spectra of \(4DN=1\) type I string vacua on non-toroidal CY threefolds, Phys. lett. B, 438, 52, (1998), [arXiv:hep-th/9806131]
[145] M.R. Douglas, Branes within branes, arXiv:hep-th/9512077. · Zbl 1060.81576
[146] Berkooz, M.; Leigh, R.G.; Polchinski, J.; Schwarz, J.H.; Seiberg, N.; Witten, E., Anomalies, dualities, and topology of \(D=6N=1\) superstring vacua, Nucl. phys. B, 475, 115, (1996), [arXiv:hep-th/9605184] · Zbl 0925.81335
[147] Bianchi, M.; Ferrara, S.; Pradisi, G.; Sagnotti, A.; Stanev, Y.S., Twelve-dimensional aspects of four-dimensional N=1 type I vacua, Phys. lett. B, 387, 64, (1996), [arXiv:hep-th/9607105]
[148] Kakushadze, Z., Aspects of N=1 type I-heterotic duality in four dimensions, Nucl. phys. B, 512, 221, (1998), [arXiv:hep-th/9704059] · Zbl 0947.81057
[149] Antoniadis, I.; Bachas, C.; Dudas, E.; Bain, P.; Berg, M., Effective action of matter fields in four-dimensional string orientifolds, Nucl. phys. B, Jhep, 0004, 013, (2000), [arXiv:hep-th/0003185] · Zbl 0959.81056
[150] Vafa, C.; Vafa, C.; Witten, E., On orbifolds with discrete torsion, Nucl. phys. B, J. geom. phys., 15, 189, (1995), [arXiv:hep-th/9409188] · Zbl 0816.53053
[151] M. Bianchi, Ph.D. Thesis, Univ. Roma, 1992;; A. Sagnotti, Anomaly cancellations and open string theories, arXiv:hep-th/9302099.
[152] Berkooz, M.; Leigh, R.G., A \(D=4N=1\) orbifold of type I strings, Nucl. phys. B, 483, 187, (1997), [arXiv:hep-th/9605049] · Zbl 0925.81227
[153] L.E. Ibáñez, F. Marchesano, R. Rabadan, Getting just the standard model at intersecting branes, arXiv:hep-th/0105155;; G. Honecker, Intersecting brane world models from D8 branes on \((T\^{}\{2\}×T\^{}\{4\}/Z3)/Ω R1\) type IIA orientifolds, arXiv:hep-th/0201037;; R. Blumenhagen, B. Körs, D. Lüst, Moduli stabilization for intersecting brane worlds in type 0’ string theory, arXiv:hep-th/0202024;; L.F. Alday, G. Aldazabal, In quest of just the standard model on D-branes at a singularity, arXiv:hep-th/0203129;; D. Cremades, L.E. Ibáñez, F. Marchesano, Intersecting brane models of particle physics and the Higgs mechanism, arXiv:hep-th/0203160;; C. Kokorelis, GUT model hierarchies from intersecting branes, arXiv:hep-th/0203187.
[154] Born, M.; Infeld, L.; Dirac, P.A., An extensible model of the electron, Proc. roy. soc. London A, Proc. roy. soc. London A, 268, 57, (1962) · Zbl 0111.43702
[155] Nielsen, N.K.; Olesen, P.; Ambjorn, J.; Nielsen, N.K.; Olesen, P.; Nielsen, H.B.; Ninomiya, M., A bound on bag constant and nielsen – olesen unstable mode in QCD, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 156, 1, (1979)
[156] S.F. Hassan, R. Minasian, D-brane couplings, RR fields and Clifford multiplication, arXiv:hep-th/0008149.
[157] Maldacena, J., The large N limit of superconformal field theories and supergravity, Adv. theor. math. phys., 2, 231, (1998), [Int. J. Theor. Phys. 38 (1998) 1113] [arXiv:hep-th/9711200] · Zbl 0914.53047
[158] Minasian, R.; Moore, G.W.; Witten, E., D-branes and K-theory, Jhep, Jhep, 9812, 019, (1998), [arXiv:hep-th/9810188]
[159] A (partial) list of D-brane constructions is, C.G. Callan, I.R. Klebanov, D-brane boundary state dynamics, Nucl. Phys. B 465 (1996) 473 [arXiv:hep-th/9511173];; See also, B. Craps, F. Roose, Anomalous D-brane and orientifold couplings from the boundary state, Phys. Lett. B 445 (1998) 150 [arXiv:hep-th/9808074];
[160] Dudas, E.; Mourad, J., D-branes in non-tachyonic 0B orientifolds, Nucl. phys. B, 598, 189, (2001), [arXiv:hep-th/0010179] · Zbl 1046.81537
[161] E. Dudas, J. Mourad, A. Sagnotti, Charged and uncharged D-branes in various string theories, arXiv:hep-th/0107081. · Zbl 0982.81041
[162] Frau, M.; Gallot, L.; Lerda, A.; Strigazzi, P.; Di Vecchia, P.; Frau, M.; Lerda, A.; Liccardo, A.; Gallot, L.; Lerda, A.; Strigazzi, P., Gauge and gravitational interactions of non-BPS D-particles, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 586, 206, (2000), [arXiv:hep-th/0001049] · Zbl 1043.81652
[163] D. Friedan, Introduction to Polyakov’s string theory, EFI-82-50-CHICAGO, Proceedings of Summer School of Theoretical Physics: Recent Advances in Field Theory and Statistical Mechanics, Les Houches, France, August 2-September 10, 1982.
[164] For a recent review on the status of Liouville theory, see J. Teschner, Liouville theory revisited, arXiv:hep-th/0104158.
[165] Polyakov, A.M., The wall of the cave, Int. J. mod. phys. A, 14, 645, (1999), [arXiv:hep-th/9809057] · Zbl 0931.81013
[166] P. Bantay, Permutation orbifolds, arXiv:hep-th/9910079;; P. Bantay, On generalizations of Verlinde’s formula, arXiv:hep-th/0007164;; T. Gannon, Boundary conformal field theory and fusion ring representations, arXiv:hep-th/0106105.
[167] G.W. Moore, N. Seiberg, Lectures on Rcft, RU-89-32 Presented at Trieste Spring School, 1989.
[168] Sonoda, H.; Sonoda, H., Sewing conformal field theories. 2, Nucl. phys. B, Nucl. phys. B, 311, 417, (1988)
[169] Cardy, J.L.; Lewellen, D.C.; Lewellen, D.C., Sewing constraints for conformal field theories on surfaces with boundaries, Phys. lett. B, Nucl. phys. B, 372, 654, (1992)
[170] For a review, see V.B. Petkova, J.B. Zuber, Conformal boundary conditions and what they teach us, arXiv:hep-th/0103007. · Zbl 1028.81520
[171] Huiszoon, L.R.; Schellekens, A.N.; Sousa, N.; Fuchs, J.; Huiszoon, L.R.; Schellekens, A.N.; Schweigert, C.; Walcher, J., Boundaries, crosscaps and simple currents, Phys. lett. B, Phys. lett. B, 495, 427, (2000), [arXiv:hep-th/0007174] · Zbl 0976.81090
[172] Fuchs, J.; Schweigert, C., A classifying algebra for boundary conditions, Phys. lett. B, 414, 251, (1997), [arXiv:hep-th/9708141]
[173] Knizhnik, V.G.; Zamolodchikov, A.B.; Gepner, D.; Witten, E., String theory on group manifolds, Nucl. phys. B, Nucl. phys. B, 278, 493, (1986)
[174] Cappelli, A.; Itzykson, C.; Zuber, J.B.; Cappelli, A.; Itzykson, C.; Zuber, J.B., The ADE classification of minimal and A1(1) conformal invariant theories, Nucl. phys. B, Commun. math. phys., 113, 1, (1987) · Zbl 0639.17008
[175] A.Y. Alekseev, V. Schomerus, RR charges of D2 branes in the WZW model, arXiv:hep-th/0007096;; P. Bordalo, S. Ribault, C. Schweigert, Flux stabilization in compact groups, arXiv:hep-th/0108201;; Related work can be found in C. Klimcik, P. Severa, Open strings and D-branes in WZNW models, Nucl. Phys. B 488 (1997) 653 [arXiv:hep-th/9609112]; · Zbl 0989.81563
[176] T. Quella, V. Schomerus, Symmetry breaking boundary states and defect lines, arXiv:hep-th/0203161;; For a review, see C. Schweigert, J. Fuchs, J. Walcher, Conformal field theory, boundary conditions and applications to string theory, arXiv:hep-th/0011109. · Zbl 1031.81605
[177] I. Brunner, On orientifolds of WZW models and their relation to geometry, arXiv:hep-th/0110219;; L.R. Huiszoon, K. Schalm, A.N. Schellekens, Geometry of WZW orientifolds, arXiv:hep-th/0110267;; C. Bachas, N. Couchoud, P. Windey, Orientifolds of the 3-sphere, arXiv:hep-th/0111002;; N. Couchoud, D-branes and orientifolds of SO(3), arXiv:hep-th/0201089;; Y. Hikida, Orientifolds of SU(2)/U(1) WZW models, arXiv:hep-th/0201175;; Y. Hikida, Crosscap states for orientifolds of Euclidean AdS_{3}, arXiv:hep-th/0203030.
[178] See, for instance, J. Maldacena, H. Ooguri, Strings in AdS_{3} and \( SL(2,R)\) WZW model. I, J. Math. Phys. 42 (2001) 2929 [arXiv:hep-th/0001053].; J. Maldacena, H. Ooguri, Strings in AdS_{3} and the \( SL(2,R)\) WZW model. III: correlation functions, arXiv:hep-th/0111180;
[179] C. Schweigert, J. Fuchs, The world sheet revisited, arXiv:hep-th/0105266;; C. Schweigert, J. Fuchs, Category theory for conformal boundary conditions, arXiv:math.ct/0106050;; J. Fuchs, I. Runkel, C. Schweigert, Conformal correlation functions, Frobenius algebras and triangulations, arXiv:hep-th/0110133;; J. Fuchs, Conformal boundary conditions and 3D topological field theory, arXiv:hep-th/0110158;; J. Fuchs, A reason for fusion rules to be even, arXiv:math.qa/0110257.
[180] P.C. Ferreira, I.I. Kogan, R.J. Szabo, Conformal orbifold partition functions from topologically massive gauge theory, arXiv:hep-th/0112104;; P.C. Castelo Ferreira, Heterotic, open and unoriented string theories from topological membrane, arXiv:hep-th/0110067, Ph.D. Thesis, and references therein.
[181] Ya.S. Stanev, Laurea Thesis, University of Rome Tor Vergata, http://www.roma2.infn.it/stringaperta;; Ya.S. Stanev, talk at the DESY Workshop on Comformal Field Theory, http://www.desy.de/jfuchs/CftD.html;; A.N. Schellekens, Y.S. Stanev, Trace formulas for annuli, arXiv:hep-th/0108035.
[182] Felder, G.; Fröhlich, J.; Fuchs, J.; Schweigert, C., The geometry of WZW branes, J. geom. phys., 34, 162, (2000), arXiv:hep-th/9909030 · Zbl 1002.81042
[183] K. Matsubara, V. Schomerus, M. Smedback, Open strings in simple current orbifolds, arXiv:hep-th/0108126. · Zbl 0985.81098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.