×

zbMATH — the first resource for mathematics

Duct flow with a transverse magnetic field at high Hartmann numbers. (English) Zbl 0998.76045
Summary: We show that finite element methods can be used for determining the flow in a straight channel under a variety of wall conductivity conditions when a uniform magnetic field is imposed perpendicular to flow direction. At high Hartmann numbers oscillatory solutions are found unless sufficient points are placed within Hartmann layers. In some one- and two-dimensional problems it appears that it is adequate to place one or two points within the Hartmann layer to remove the oscillations. Central core values can sometimes be predicted with good accuracy, even when the Hartmann layers are not resolved adequately. A nine-point Gauss point rule has been used to evaluate the stiffness and other matrices for eight-node elements.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shercliff, Journal of Fluid Mechanics 13 pp 513– (1962) · Zbl 0117.43302 · doi:10.1017/S0022112062000890
[2] Tezer-Sezgin, International Journal for Numerical Methods in Engineering 28 pp 445– (1989) · Zbl 0669.76140 · doi:10.1002/nme.1620280213
[3] Singh, Journal of Mathematical and Physical Sciences 18 pp 5– (1984)
[4] Wenger, Journal of Fluid Mechanics 43 pp 211– (1970) · Zbl 0212.59802 · doi:10.1017/S002211207000232X
[5] Sloan, Zeitschrift fuer Angewandte Mathematik und Physikalische 24 pp 689– (1973) · Zbl 0273.76071 · doi:10.1007/BF01597073
[6] Barrett, Zeitschrift fuer Angewandte Mathematik und Physikalische 27 pp 613– (1976) · Zbl 0351.76126 · doi:10.1007/BF01591173
[7] Hood, International Journal for Numerical Methods in Engineering 10 pp 379– (1976) · Zbl 0322.65013 · doi:10.1002/nme.1620100209
[8] Singh, International Journal for Numerical Methods in Engineering 18 pp 1104– (1982) · Zbl 0489.76119 · doi:10.1002/nme.1620180714
[9] Gold, Journal of Fluid Mechanics 13 pp 505– (1962) · Zbl 0117.43301 · doi:10.1017/S0022112062000889
[10] Chang, Zeitschrift fuer Angewandte Mathematik und Physikalische 12 pp 100– (1961) · Zbl 0115.21904 · doi:10.1007/BF01601011
[11] Hunt, Journal of Fluid Mechanics 21 pp 577– (1965) · Zbl 0125.18401 · doi:10.1017/S0022112065000344
[12] Hunt, Annual Review of Fluid Mechanics 3 pp 37– (1971) · Zbl 0265.76126 · doi:10.1146/annurev.fl.03.010171.000345
[13] Hunt, Journal of Fluid Mechanics 23 pp 563– (1965) · doi:10.1017/S0022112065001544
[14] Fully developed magnetohydrodynamic flows in rectangular ducts with insulating walls. Kemforschungscentrum Karlsruhe. KfK5247, 1993.
[15] Verardi, IEEE Transactions on Magnetics 34 pp 3134– (1998) · doi:10.1109/20.717734
[16] Shercliff, Proceedings of the Cambridge Philosophical Society 49 pp 136– (1953) · doi:10.1017/S0305004100028139
[17] Gupta, International Journal for Numerical Methods in Engineering 11 pp 1251– (1977) · Zbl 0358.65022 · doi:10.1002/nme.1620110806
[18] Temperly, Archives of Mechanics 36 pp 673– (1984) · Zbl 0048.19802
[19] Williams, Journal of Fluid Mechanics 16 pp 262– (1963) · Zbl 0226.76038 · doi:10.1017/S0022112063000732
[20] Molokov, European Journal of Mechanics B, Fluids 1 pp 769– (1993)
[21] Sloan, ZAMM 46 pp 439– (1966) · Zbl 0158.23803 · doi:10.1002/zamm.19660460705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.