×

zbMATH — the first resource for mathematics

On Khovanov’s categorification of the Jones polynomial. (English) Zbl 0998.57016
This paper contributes a lot to understand Khovanov’s work on the categorification of the Jones polynomial [M. Khovanov, Duke Math. J. 101, No. 3, 359-426 (2000; Zbl 0960.57005); A functor-valued invariant of tangles, Archiv. Math. QA/0103190)]. Furthermore, the author provides some computations of the Khovanov polynomial \(Kh(L)\) of a link projection \(L\), including one that shows that Khovanov’s invariant is strictly stronger than the Jones polynomial. Finally, a table of the values of Khovanov’s polynomial for all prime knots with up to 11 crossings completes the paper.

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EMIS EuDML arXiv
References:
[1] D Bar-Natan, This paper’s website · arxiv:math.GT/0201043
[2] S Garoufalidis, A conjecture on Khovanov’s invariants, University of Warwick preprint (2001) · Zbl 1064.57019 · doi:10.4064/fm184-0-7
[3] J Hoste, M Thistlethwaite, Knotscape · www.math.utk.edu
[4] L H Kauffman, On knots, Annals of Mathematics Studies 115, Princeton University Press (1987) · Zbl 0627.57002
[5] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 · Zbl 0960.57005 · doi:10.1215/S0012-7094-00-10131-7
[6] M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 · Zbl 1002.57006 · doi:10.2140/agt.2002.2.665 · emis:journals/UW/agt/AGTVol2/agt-2-30.abs.html · eudml:122288 · arxiv:math/0103190
[7] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990) · Zbl 0854.57002
[8] R Scharein, KnotPlot · www.knotplot.com
[9] A Stoimenow, Polynomials of knots with up to 10 crossings · mathsci.kaist.ac.kr
[10] S Wolfram, The \(\mathrm{Mathematica}^{(R)}\) book, Wolfram Media, Champaign, IL (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.