×

zbMATH — the first resource for mathematics

Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. (English) Zbl 0997.92020
Summary: This paper provides a survey of mathematical models and methods dealing with the analysis and simulation of tumor dynamics in competition with the immune system. The characteristic scales of the phenomena are identified and the mathematical literature on models and problems developed on each scale is reviewed and critically analysed. The aim is to provide a general framework towards the development of immuno-mathematical theories and to develop research perspectives in this promising new field of applied mathematics.

MSC:
92C50 Medical applications (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX Cite
Full Text: DOI
References:
[1] ()
[2] Chaplain, M.A.J., Special issue on mathematical models for the growth, development and treatment of tumours, Math. models meth. appl. sci., 9, (1999)
[3] Chaplain, M.A.J., Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of stages of tumor development, modelling and simulation problems on tumor-immune system dynamics, special issue of mathl. comput. modelling, 23, 6, 47-87, (1996) · Zbl 0859.92012
[4] Bellomo, N.; De Angelis, E., Strategies of applied mathematics towards an immuno mathematical theory on tumors and immune system interactions, Math. models meth. appl. sci., 8, 1403-1429, (1998) · Zbl 0947.92014
[5] Swan, G.W., Role of optimal control theory in cancer chemotherapy, Math. biosci., 101, 237-284, (1990) · Zbl 0702.92007
[6] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Phil. trans. roy. soc., 115, 513-585, (1825)
[7] Gyllenberg, M.; Webbs, G., A nonlinear structured population model of tumor growth with quiescence, J. math. biol., 28, 671-694, (1990) · Zbl 0744.92026
[8] Michelson, S.; Leith, J., Interlocking triads of growth control factors in tumors, Bull. math. biol., 57, 345-366, (1995) · Zbl 0813.92016
[9] Michelson, S.; Leith, J., Tumor heterogeneity and growth control, (), 237-294
[10] Michelson, S.; Leith, J., Positive feedback and angiogenesis in tumor growth control, Bull. math. biol., 57, 345-366, (1997)
[11] Lo Schiavo, M., Discrete kinetic cellular models of tumor immune system interaction, Math. models meth. in appl. sci., 8, 1187-1210, (1996) · Zbl 0874.92022
[12] Kirschner, D.; Panetta, J., Modeling immunotherapy of the tumor-immune interaction, J. math. biol., 37, 235-252, (1998) · Zbl 0902.92012
[13] Herberman, R.B., NK cells and other natural effector cells, (1982), Academic Press New York
[14] ()
[15] Byrne, H.M.; Chaplain, M.A.J., Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions, Bull. math. biol., 57, 461-486, (1995) · Zbl 0812.92011
[16] Byrne, H.M.; Chaplain, M.A.J., Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis, Appl. math. lett., 9, 1, 69-74, (1996) · Zbl 0852.92009
[17] Byrne, H.M.; Chaplain, M.A.J., Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathl. comput. modelling, 24, 12, 1-17, (1996) · Zbl 0883.92014
[18] Byrne, H.M.; Chaplain, M.A.J., Free boundary value problem associated with the growth and development of multicellular spheroids, Europ. J. appl. math., 8, 639-658, (1997) · Zbl 0906.92016
[19] Byrne, H.M., The effect of time delays on the dynamics of avascular tumor growth, Math. biosci., 144, 83-117, (1997) · Zbl 0904.92023
[20] Byrne, H.M.; Chaplain, M.A.J., Necrosis and apoptosis: distinct cell loss mechanism in a mathematical model of avascular tumour growth, J. theor. medicine, 1, 223-235, (1997) · Zbl 0917.92013
[21] Byrne, H.M.; Gourley, S., The role of growth factors in avascular tumor growth, Mathl. comput. modelling, 26, 4, 35-55, (1997) · Zbl 0898.92018
[22] Byrne, H.M., A comparison of the roles of localized and nonlocalized growth factors in solid tumour growth, Math. models meth. appl. sci., 9, 541-568, (1999) · Zbl 0932.92018
[23] Chaplain, M.A.J., Prom mutation to metastasis: the mathematical modelling of stages of tumor developments, (), 187-236
[24] Chaplain, M.A.J.; Giles, S.M.; Sleeman, B.D.; Jarvis, R.J., A mathematical analysis of a model for tumour angiogenesis, J. math. biol., 33, 744-770, (1995) · Zbl 0830.92013
[25] Chaplain, M.A.J.; Anderson, A., Mathematical modelling, simulation, and prediction of tumour-induced angiogenesis, Invasion and metastasis, 16, 222-234, (1996)
[26] Orme, M.; Chaplain, M.A.J., A mathematical model of vascular tumor growth and invasion, Mathl. comput. modelling, 23, 10, 43-60, (1996) · Zbl 0852.92010
[27] Orme, M.; Chaplain, M.A.J., Two-dimensional models of tumour angiogenesis and antiangiogenesis strategies, IMA J. math. appl. medic. biol., 14, 189-205, (1997) · Zbl 0894.92022
[28] Owen, M.; Sherrat, J., Modelling the macrophage invasion of tumours: effects on growth and composition, IMA J. math. appl. med. biol., 15, 165-185, (1998) · Zbl 0909.92022
[29] Owen, M.; Sherrat, J., Mathematical modelling of macrophages dynamics in tumours, Math. models meth. appl. sci., 9, 513-540, (1999)
[30] Please, C.P.; Pettet, G.; McElwain, D.L., Avascular tumour dynamics and necrosis, Math. models meth. appl. sci., 9, 569-580, (1999) · Zbl 0933.92021
[31] Ward, J.; King, J., Mathematical modelling of avascular-tumour growth, IMA J. math. appl. med. biol., 14, 39-69, (1997) · Zbl 0866.92011
[32] Ward, J.; King, J., Mathematical modelling of avascular-tumour growth II: modeling growth saturation, IMA J. math. appl. med. biol., 15, 1-42, (1998)
[33] Bellomo, N.; Preziosi, L., Modelling mathematical methods and scientific computation, (1995), CRC Press Boca Raton, FL · Zbl 0871.65001
[34] Bellomo, N.; Forni, G., Dynamics of tumor interaction with the host immune system, Mathl. comput. modelling, 20, 1, 107-122, (1994) · Zbl 0811.92014
[35] Bellomo, N.; Preziosi, L.; Forni, G., On a kinetic (cellular) theory of the competition between tumors and the immune host system, J. biolog. systems, 4, 479-502, (1996)
[36] Bellomo, N.; Preziosi, L.; Forni, G., Tumors immune system interaction: the kinetic cellular theory, (), 135-186
[37] Bellomo, N.; Firmani, B.; Guerri, L.; Preziosi, L., On a kinetic theory of cytokine-mediated interaction between tumors and immune system, ARI journal, 50, 21-32, (1997)
[38] Bellomo, N.; Firmani, B.; Guerri, L., Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition, Appl. math. lett., 12, 2, 39-44, (1999) · Zbl 0932.92016
[39] Firmani, B.; Guerri, L.; Preziosi, L., Tumor/immune system competition with medically induced activation/disactivation, Math. models meth. appl. sci., 9, 491-512, (1999) · Zbl 0934.92016
[40] Adam, J.; Noren, R., Equilibrium model of vascularized spherical carcinoma with central necrosis: some properties of the solution, J. math. biol., 31, 735-745, (1993) · Zbl 0777.92007
[41] Adam, J., General aspects of modeling tumor growth and immune response, (), 15-88
[42] (), 169-268, Special Issue
[43] Byrne, H.M., The importance of intercellular adhesion in the development of carcinomas, IMA J. math. appl. med. biol., 14, 305-323, (1997) · Zbl 0891.92017
[44] Perumpanani, A.J.; Sherratt, J.A.; Norbury, J.; Byrne, H.M., Biological inferences from a mathematical model for malignant invasion, Invasion and metastasis, 16, 209-221, (1996)
[45] Tracqui, P.; Cruywagen, G.; Woodward, D.; Bartoo, G.; Murray, D.; Alvord, E., A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth, Cell prolif., 28, 17-31, (1995)
[46] Tracqui, P.; Mendjeli, M., Modelling three-dimensional growth of brain tumours from series of scans, Math. models meth. appl. sci., 9, 581-598, (1999) · Zbl 0932.92021
[47] Woodward, D.; Cook, J.; Tracqui, P.; Cruywagens, G.; Murray, J.; Alvord, E., A mathematical model of glioma growth: the effect of extent of surgical resection, Cell prolif., 29, 269-288, (1996)
[48] De Angelis, E.; Preziosi, L., Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem, Math. models meth. appl. sci., 10, 3, 379-408, (2000) · Zbl 1008.92017
[49] ()
[50] Qi, Z.; Lutz, W.; Gaylor, D., A carcinogenesis model describing mutational events at the DNA adducted level, J. math. biosci., 144, 23-44, (1997) · Zbl 0924.92012
[51] Greller, L.; Tobin, F.; Poste, G., Tumor hetereogenity and progression: conceptual foundation for modeling, Invasion and metastasis, 16, 177-208, (1996)
[52] Taubes, G., Do immunologists dream about electric mice?, Science, 265, 886-888, (1994)
[53] Arlotti, L.; Lachowicz, M., Qualitative analysis of a nonlinear integro-differential equation modelling tumor-host dynamics, modelling and simulation problems on tumor-immune system dynamics, special issue of mathl. comput. modelling, 23, 6, 11-29, (1996) · Zbl 0859.92011
[54] Arlotti, L.; Bellomo, N.; Lachowicz, M., Kinetic equations modelling population dynamics, Transp. theory statist. phys., 29, 1/2, 125-139, (2000) · Zbl 0946.92019
[55] Sutherland, R., Cell and environment interaction in tumor microregions: the multicell spheroid model, Science, 240, 177-184, (1988)
[56] Freyer, J.; Schor, P., Regrowth kinetics of cells from different regions of multicell spheroids of 4-cell-lines, J. cell. physiol., 138, 384-392, (1989)
[57] Folkman, J., Clinical applications of research on angiogenesis, N. engl. J. med., 333, 1750-1763, (1995)
[58] Hahnfeldt, P.; Panigrahy, D.; Folkman, J.; Hlatky, L., Tumor development under angiogenic signaling, Cancer res., 59, 4770-4775, (1999)
[59] Cui, S.; Friedman, A., Analysis of a mathematical model of the effect of the inhibitors on the growth of tumors, (1999), Preprint
[60] Cui, S.; Friedman, A., Analysis of a mathematical model of the growth of necrotic tumors, (1999), Preprint
[61] Friedman, A.; Reitich, F., Analysis of a mathematical model the growth of tumors, (1999), Preprint · Zbl 0944.92018
[62] Panetta, J.C., A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment, Bull. math. biol., 58, 425-447, (1996) · Zbl 0859.92014
[63] Agur, Z., The effect of drug schedule on nonresponsiveness to chemiotherapy, Annals N. Y. acad. sci., 504, 274-277, (1996)
[64] Shochat, E.; Hart, D.; Agur, Z., Using computer simulations for evaluating the efficacy of breast cancer chemiotherapy protocols, Math. models meth. appl. sci., 9, 599-616, (1999) · Zbl 0933.92022
[65] Rosso, R.; Virga, E., Adhesion of lipid tuboles in an assembly, Europ. J. appl. math., 9, 485-506, (1998) · Zbl 0932.76100
[66] Kuztnetsov, V.A., Basic models of tumor-immune system interactions: identification, analysis and predictions, (), 237-294
[67] Stout, R.; Suttles, J., T-cell signaling of macrophage activation: cell contact-dependent and cytokine signals, (1995), Springer Berlin
[68] Düchting, W.; Ulmer, W.; Ginsberg, T., Cancer: A challenge for control theory and computer, Europ. J. cancer, 32A, 1283-1292, (1996) · Zbl 0925.92075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.