×

zbMATH — the first resource for mathematics

One-dimensional hard-core Bose gas. (English) Zbl 0995.82501

MSC:
82B10 Quantum equilibrium statistical mechanics (general)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Lieb, E.; Liniger, W., Exact analysis of interacting Bose gas. I. the general solution and the ground state, Phys. rev., 130, 1605-1616, (1963) · Zbl 0138.23001
[2] Lieb, E., Exact analysis of interacting Bose gas. II. the excitation spectrum, Phys. rev., 130, 1616-1624, (1963) · Zbl 0138.23002
[3] Yang, C.N.; Yang, C.P., Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction, J. math. phys., 10, 1115-1122, (1969) · Zbl 0987.82503
[4] Kato, G.; Wadati, M., Explicit calculation of the partition function of a one-dimensional δ-function Bose gas, Chaos, solitons & fractals, 12, 993-1003, (2001) · Zbl 1076.82510
[5] Kato G, Wadati M. Partition function for a one-dimensional δ-function Bose gas. Phys Rev E 2001;63:036106-1-036106-14
[6] Kato, G.; Wadati, M., Statistical mechanics of a one-dimensional δ-function Bose gas, J. phys. soc. jpn., 70, 1924-1930, (2001) · Zbl 1133.82306
[7] Kato G, Wadati M. Graphical representation of the partition function for a 1-D δ-function Bose gas. J Math Phys [in press] · Zbl 1063.82005
[8] ()
[9] Sutherland, B., Quantum many-body problem in one dimension: thermodynamics, J. math. phys., 12, 251-256, (1971)
[10] Tonks, L., The complete equation of state of one. two and three dimensional gases of hard elastic spheres, Phys. rev., 50, 955-963, (1936) · JFM 62.1607.19
[11] Toda, M., Wave propagation in anharmonic lattices, J. phys. soc. jpn., 23, 501-506, (1967)
[12] Wadati, M., Bosonic formulation of the Bethe ansatz method, J. phys. soc. jpn., 54, 3727-3733, (1985)
[13] Wadati, M., Thermal Bethe ansatz and fractional statistics, J. phys. soc. jpn., 64, 1552-1556, (1995)
[14] Isihara A. Statistical physics. New York: Academic Press; 1971. p. 84
[15] Blöte, H.W.J.; Cardy, J.L.; Nightingale, M.P., Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. rev. lett., 56, 742-745, (1986)
[16] Affleck, I., Universal term in the free energy at a critical point and the conformal anomaly, Phys. rev. lett., 56, 746-748, (1986)
[17] Korepin VE, Bogoliubov NM, Izergin AG. Quantum inverse scattering method and correlation functions. Cambridge: Cambridge University Press; 1993. p. 52-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.