×

zbMATH — the first resource for mathematics

Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique. (English) Zbl 0995.65094
A new semi-Lagrangean scheme is proposed for the numerical solution of multi-dimensional hyperbolic partial differential equations. The new method is based on the constrained interpolation profile and mass conservation is exactly satisfied. Numerical results document the features of the new method.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Takewaki, H.; Nishiguchi, A.; Yabe, T., Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic type equations, J. comput. phys., 61, 261, (1985) · Zbl 0607.65055
[2] Takewaki, H.; Yabe, T., The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations, J. comput. phys., 70, 355, (1987) · Zbl 0624.65079
[3] Yabe, T.; Aoki, T., A universal solver for hyperbolic equations by cubic-polynomial interpolation. I. one-dimensional solver, Comput. phys. commun., 66, 219, (1991) · Zbl 0991.65521
[4] Yabe, T.; Ishikawa, T.; Wang, P.Y.; Aoki, T.; Kadota, Y.; Ikeda, F., A universal solver for hyperbolic equations by cubic-polynomial interpolation. II. two- and three-dimensional solver, Comput. phys. commun., 66, 233, (1991) · Zbl 0991.65522
[5] Cfd j., 8, (1999)
[6] Utsumi, T.; Kunugi, T.; Aoki, T., Stability and accuracy of the cubic interpolated propagation scheme, Comput. phys. commun., 101, 9, (1997)
[7] T. Yabe, Unified solver CIP for solid, liquid and gas, in, Computational Fluid Dynamics Review 1998, edited by, M. M. Hafez and K. Oshima, World Scientific, Singapore, 1998, p, 1011.
[8] Yabe, T.; Zhang, Y.; Xiao, F., A numerical procedure—CIP—to solve all phases of matter together, Sixteenth international conference on numerical methods in fluid dynamics, 439, (1998)
[9] Yabe, T.; Xiao, F.; Utsumi, T., The constrained interpolation profile method for multiphase analysis, J. comput. phys., 169, 556, (2001) · Zbl 1047.76104
[10] Robert, A., A semi-implicit and semi-Lagrangian numerical integration scheme for the primitive meteorological equations, J. meteorol. soc. jpn., 60, 319, (1982)
[11] Staniforth, A.; Côté, J., Semi-Lagrangian integration scheme for atmospheric model—A review, Mon. weather rev., 119, 2206, (1991)
[12] Williamson, D.L.; Rasch, P.J., Two-dimensional semi-Lagrangian transport with shape-preserving interpolation, Mon. weather rev., 117, 102, (1989)
[13] Bermejo, R.; Staniforth, A., The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes, Mon. weather rev., 120, 2622, (1992)
[14] Laprise, R.; Plante, A., SLIC: A semi-Lagrangian integrated-by-cell mass-conserving numerical transport scheme, Mon. weather rev., 123, 553, (1995)
[15] Lin, S.; Rood, R.B., Multidimensional flux-form semi-Lagrangian transportation schemes, Mon. weather rev., 124, 2046, (1996)
[16] Carpenter, R.L.; Droegemeier, K.K.; Woodward, P.R.; Hane, C.E., Application of the piecewise parabolic method (PPM) to meteorological modeling, Mon. wheather rev., 118, 586, (1990)
[17] Nakamura, T.; Yabe, T., Cubic interpolation scheme for solving the hyperdimensional vlasov – poisson equation in phase space, Comput. phys. commun., 120, 122, (1999) · Zbl 1001.82003
[18] Tanaka, R.; Nakamura, T.; Yabe, T., Constructing exactly conservative scheme in non-conservative form, Comput. phys. commun., 126, 232, (2000) · Zbl 0959.65097
[19] Yabe, T.; Tanaka, R.; Nakamura, T.; Xiao, F., An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension, Mon. weather rev., 129, 332, (2001)
[20] Nakamura, T.; Tanaka, R.; Yabe, T., Multi-dimensional conservative scheme in non-conservative form, Cfd j., 9, 437, (2001)
[21] Xiao, F.; Yabe, T.; Ito, T., Oscillation preventing scheme for advection equation by rational function, Comput. phys. commun., 93, 1, (1999) · Zbl 0921.76118
[22] Wang, P.Y.; Yabe, T.; Aoki, T., A general hyperbolic solver—the CIP method—applied to curvilinear coordinate, J. phys. soc. jpn., 62, 1865, (1993) · Zbl 0972.65510
[23] Zalesak, S.T., Fully multidimensional flux-corrected transport algorithm for fluids, J. comput. phys., 31, 335, (1979) · Zbl 0416.76002
[24] Ranc̃ić, M., Semi-Lagrangian piecewise biparabolic scheme for two-dimensional horizontal advection of a passive scalar, Mon. weather rev., 120, 1394, (1991)
[25] Doswell, C.A., A kinematic analysis of frontgenesis associated with a nondivergent vortex, J. atmos. sci., 41, 1242, (1984)
[26] Sakurai, K.; Aoki, T.; Yabe, T., Semi-Lagrangian cubic-interpolated propagation (CIP) scheme for long parcel trajectories, Cfd j., 10, 76, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.