×

The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: The vakonomic bracket. (English) Zbl 0995.37048

There are two different approaches to Lagrangian systems subjected to nonholonomic constraints: nonholonomic mechanics, based on the d’Alembert principle, and vakonomic mechanics, which is strictly variational. The aim of this paper is to study the equations of motion of vakonomic mechanics, in the framework of singular Lagrangian theories, from a geometric viewpoint.
More precisely, let \(Q\) be the configuration manifold. It is assumed that the Lagrangian function is of natural type, that is, \(L=T-U\), where \(T\) is the kinetic energy derived from a Riemannian metric on the base manifold, and U is the potential energy. It is also assumed that the constraint submanifold of the tangent manifold \(TQ\) is globally defined by the vanishing of a family of constraint functions, which are supposed to be linear in the velocities. Then, the configuration space \(Q\) is enlarged to \(P\) by introducing a family of Lagrange multipliers as new coordinates. The constraint algorithm is applied to the extended Lagrangian function in \(TP\) and the dynamics is described (Section IV of the paper), showing that the algorithm stabilizes at the second step, i.e., there are only secondary constraints.
Next, a Hamiltonian formalism on the cotangent manifold of \(P\) is discussed in Section V. In particular, it is easily proven that the extended Lagrangian is almost regular, and then the equivalence between the both formalisms, Lagrangian and Hamiltonian ones, is discussed. The second order differential equation problem is studied in Section VI. In Section VII it is shown that all the constraints are second class according to Dirac’s terminology, and a Dirac bracket giving the evolution of the observables is constructed. As an example, the vertical rolling disk is analyzed. The paper finishes with an study of the situation when the constraints are not globally defined in the original phase space \(TQ\).

MSC:

37J60 Nonholonomic dynamical systems
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
70H45 Constrained dynamics, Dirac’s theory of constraints
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Saletan E. J., Am. J. Phys. 38 pp 892– (1970) · doi:10.1119/1.1976488
[2] Vershik A. M., Lect. Notes Math. 1108 pp 218– (1984) · doi:10.1007/BFb0099560
[3] Vershik A. M., Sov. Phys. Dokl. 17 pp 34– (1972)
[4] Kozloz V. V., Dokl. Akad. Nauk SSSR 272 pp 550– (1983)
[5] Kozloz V. V., Sov. Phys. Dokl. 28 pp 735– (1983)
[6] DOI: 10.1016/0393-0440(95)00016-X · Zbl 0864.70007 · doi:10.1016/0393-0440(95)00016-X
[7] Lewis A. D., Int. J. Nonlinear Mech. 30 pp 793– (1995) · Zbl 0864.70008 · doi:10.1016/0020-7462(95)00024-0
[8] DOI: 10.1016/0034-4877(93)90073-N · Zbl 0798.58026 · doi:10.1016/0034-4877(93)90073-N
[9] DOI: 10.1016/0034-4877(96)83625-1 · Zbl 0900.70194 · doi:10.1016/0034-4877(96)83625-1
[10] Śniatycki J., Proceedings of the Workshop on Non-Holonomic Constraints in Dynamics 42 pp 5– (1998)
[11] DOI: 10.1007/BF02199365 · Zbl 0886.70014 · doi:10.1007/BF02199365
[12] Cantrijn F., J. Math. Phys. 40 pp 795– (1999) · Zbl 0974.37050 · doi:10.1063/1.532686
[13] DOI: 10.1007/BF00375092 · Zbl 0753.70009 · doi:10.1007/BF00375092
[14] DOI: 10.1007/BF02435796 · Zbl 0874.70012 · doi:10.1007/BF02435796
[15] DOI: 10.1063/1.531571 · Zbl 0869.70008 · doi:10.1063/1.531571
[16] DOI: 10.1007/BF02099604 · Zbl 0859.70012 · doi:10.1007/BF02099604
[17] DOI: 10.1016/0034-4877(94)90038-8 · Zbl 0817.70010 · doi:10.1016/0034-4877(94)90038-8
[18] Cantrijn F., Nonlinearity 12 pp 721– (1999) · Zbl 0984.37076 · doi:10.1088/0951-7715/12/3/316
[19] DOI: 10.1016/S0034-4877(97)85617-0 · Zbl 0929.70009 · doi:10.1016/S0034-4877(97)85617-0
[20] de León M., Extracta Mathematicae 13 pp 335– (1998)
[21] DOI: 10.1088/0305-4470/28/3/006 · Zbl 0852.58032 · doi:10.1088/0305-4470/28/3/006
[22] Gotay M. J., Ann. Inst. Henri Poincaré, Sect. A 30 pp 129– (1979)
[23] Gotay M. J., Ann. Inst. Henri Poincaré, Sect. A 32 pp 1– (1980)
[24] Ibort A., Fortschr. Phys. 47 pp 459– (1999) · Zbl 0956.37049 · doi:10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E
[25] DOI: 10.1016/0393-0440(86)90014-8 · Zbl 0621.58020 · doi:10.1016/0393-0440(86)90014-8
[26] DOI: 10.1088/0305-4470/18/17/014 · Zbl 0588.58020 · doi:10.1088/0305-4470/18/17/014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.