×

zbMATH — the first resource for mathematics

A direct method for solving sine-Gordon type equations. (English) Zbl 0995.35056
Summary: Using solutions of some ordinary differential equations solved by the method of separation of variables we present a direct method for finding exact solitary wave solutions of the sine-Gordon type equations. The method is used to find the exact solitary wave solutions of five types of nonlinear partial differential equations.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35L70 Second-order nonlinear hyperbolic equations
Software:
MACSYMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hereman, W.; Takaoka, M., J. phys. A, 23, 4805, (1990) · Zbl 0719.35085
[2] Hereman, W.; Korpel, A.; Banerjee, P.P., Wave motion, 7, 283, (1985)
[3] Hereman, W.; Banerjee, P.P.; Korpel, A.; Assanto, G.; Van Immerzeele, A.; Meerpoel, A., J. phys. A, 19, 607, (1986) · Zbl 0621.35080
[4] Coffey, M.W., SIAM J. appl. math., 50, 1580, (1990)
[5] Wang, M.L., Phys. lett. A, 199, 169, (1995)
[6] Wang, M.L., Phys. lett. A, 213, 279, (1996)
[7] Wang, M.L.; Zhou, Y.B.; Li, Z.B., Phys. lett. A, 216, 67, (1996)
[8] Tian, B.; Gao, Y.T., Eur. phys. J. B, 22, 351, (2001)
[9] Yan, Z.Y.; Zhang, H.Q., J. phys. A, 34, 1785, (2001)
[10] Parkes, E.J.; Duffy, B.R., Comput. phys. commun., 98, 288, (1996)
[11] Parkes, E.J.; Duffy, B.R., Phys. lett. A, 229, 217, (1997) · Zbl 1043.35521
[12] Duffy, B.R.; Parkes, E.J., Phys. lett. A, 214, 214, (1996) · Zbl 0972.35528
[13] Parkes, E.J., J. phys. A, 27, L497, (1994)
[14] Tian, B.; Gao, Y.T., Mod. phys. lett. A, 10, 2937, (1995)
[15] Gao, Y.T.; Tian, B., Comput. math. appl., 33, 115, (1997)
[16] Gudkov, V.V., Comput. math. math. phys., 36, 335, (1996)
[17] Gudkov, V.V., J. math. phys., 38, 4794, (1997)
[18] Fan, E.G., Phys. lett. A, 277, 212, (2000)
[19] Gao, Y.T.; Tian, B., Comput. phys. commun., 133, 158, (2001)
[20] Gao, Y.T.; Tian, B., Int. J. mod. phys. C, 12, 1335, (2001)
[21] Otwinowski, M., Phys. lett. A, 128, 483, (1988)
[22] Scott, A.C.; Chu, F.Y.F.; McLaughlin, D.W., Proc. IEEE, 61, 1443, (1973)
[23] Gibbon, J.D., Philos. trans. R. soc. London A, 315, 335, (1985) · Zbl 0579.35076
[24] Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., Phys. rev. lett., 30, 1262, (1973)
[25] Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., J. math. phys., 15, 1852, (1974)
[26] Clarkson, P.A.; McLeod, J.B.; Ramani, A.; Olver, P.J., SIAM J. math. anal., 17, 798, (1986)
[27] Yomosa, S., Phys. rev. A, 307, 474, (1984)
[28] Ablowitz, M.J.; Kruskal, M.D.; Ladik, J.F., SIAM J. appl. math., 36, 428, (1979)
[29] Konno, K.; Kameyama, W.; Sanuki, H., J. phys. soc. jpn., 37, 171, (1974)
[30] Born, M.; Infeld, L., Proc. R. soc. London, 144A, 425, (1934)
[31] Gu, C.H., Soliton theory and its application, (1990), Zhejiang Publishing House of Science and Technology Hangzhou
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.