×

zbMATH — the first resource for mathematics

Finite-time stabilization and stabilizability of a class of controllable systems. (English) Zbl 0994.93049
Summary: A finite-time control problem for a class of controllable systems is considered. Explicit formulae are proposed for the finite-time stabilization of a chain of power-integrators, and then discussions about a generalized class of nonlinear systems are given.

MSC:
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Athans, M.; Falb, P., Optimal control: an introduction to theory and its applications, (1966), McGraw-Hill New York
[2] Bacciotti, A.; Rosier, L., Lyapunov functions and stability in control theory, Lecture note in control and information sciences, Vol. 267, (2001), Springer Berlin
[3] S. Bhat, D. Bernstein, Finite time stability of homogeneous systems, Proceedings of ACC, Albuquerque, NM, 1997, pp. 2513-2514.
[4] Bhat, S.; Bernstein, D., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE trans. automat. control, 43, 5, 678-682, (1998) · Zbl 0925.93821
[5] Bhat, S.; Bernstein, D., Finite-time stability of continuous autonomous systems, SIAM J. control optim., 38, 751-766, (2000) · Zbl 0945.34039
[6] Celikovsky, S.; Aranda-Bricaire, E., Constructive nonsmooth stabilization of triangular systems, Systems control lett., 32, 1, 79-91, (1999) · Zbl 0913.93057
[7] Celikovsky, S.; Nijmeijer, H., On the relation between local controllability and stabilizability for a class of nonlinear system, IEEE trans. automat. control, 42, 1, 90-94, (1997) · Zbl 0871.93042
[8] Coron, J.; Praly, L., Adding an integrator for the stabilization problem, Systems control. lett., 17, 89-107, (1991) · Zbl 0747.93072
[9] Haimo, V., Finite time controllers, SIAM J. control optim., 24, 4, 760-770, (1986) · Zbl 0603.93005
[10] J. Han, Nonlinear design methods for control systems, 14th World Congress of IFAC, Beijing, 1999, pp. F521-526.
[11] Hermes, H., Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, (), 249-260
[12] Hong, Y.; Huang, J.; Xu, Y., On an output feedback finite-time stabilization problem, IEEE trans. automat. control, 46, 2, 305-309, (2001) · Zbl 0992.93075
[13] Y. Hong, G. Yang, L. Bushnell, H. Wang, Global finite time stabilization: from state feedback to output feedback, Proceedings of IEEE CDC, Sydney, Australia, 2000.
[14] Kawski, M., Stabilization of nonlinear systems in the plane, Systems control lett., 12, 2, 169-175, (1989) · Zbl 0666.93103
[15] Nijmeijer, H.; van der Schaft, A., Nonlinear dynamic control systems, (1990), Springer Berlin
[16] L. Praly, Generalized weighted homogeneity and state dependent time scale for linear controllable systems, Proceedings of IEEE CDC, San Diego, 1997, pp. 4342-4347.
[17] Rosier, L., Homogeneous Lyapunov function for homogeneous continuous vector field, Systems control lett., 19, 4, 467-473, (1992) · Zbl 0762.34032
[18] H. Wang, Y. Hong, L. Bushnell, Nonsmooth bifurcation control, Proceedings of ACC, Arlington, VA, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.