×

zbMATH — the first resource for mathematics

Nonequilibrium phase transitions in epidemics and sandpiles. (English) Zbl 0994.82058
Summary: Nonequilibrium phase transitions between an active and an absorbing state are found in models of populations, epidemics, autocatalysis, and chemical reactions on a surface. While absorbing-state phase transitions fall generically in the directed-percolation universality class, this does not preclude other universality classes, associated with a symmetry or conservation law. An interesting issue concerns the dynamic critical behavior of models with an infinite number of absorbing configurations or a long memory. Sandpile models, the principal example of self-organized criticality (SOC), also exhibit absorbing-state phase transitions, with SOC corresponding to a particular mode of forcing the system toward its critical point.

MSC:
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] G. Ahlers, Critical phenomena near bifurcations in systems far from equilibrium, talk presented at STATPHYS 21 conference.
[2] Liggett, T., Interacting particle systems, (1985), Springer Berlin · Zbl 0559.60078
[3] Schmittmann, B.; Zia, R.K.P., Statistical mechanics of driven diffusive systems, () · Zbl 0946.82032
[4] Marro, J.; Dickman, R., Nonequilibrium phase transitions in lattice models, (1999), Cambridge University Press Cambridge
[5] Hinrichsen, H., Adv. phys., 49, 815, (2000)
[6] G.M. Schütz, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 19, Academic Press, London, 2000.
[7] Harris, T.E., Ann. probab., 2, 969, (1974)
[8] Ziff, R.M.; Gulari, E.; Barshad, Y., Phys. rev. lett., 56, 2553, (1986)
[9] Pomeau, Y., Physica D, 23, 3, (1986)
[10] Bohr, T.; van Hecke, M.; Mikkelsen, R.; Ipsen, M., Phys. rev. lett., 86, 5482, (2001)
[11] Muñoz, M.A.; Dickman, R.; Vespignani, A.; Zapperi, S., Phys. rev. E, 59, 6175, (1999)
[12] Janssen, H.K., Z. phys. B, 42, 151, (1981)
[13] Grassberger, P., Z. phys. B, 47, 365, (1982)
[14] Cardy, J.L.; Sugar, R.L., J. phys. A, 13, L423, (1980)
[15] Domany, E.; Kinzel, W., Phys. rev. lett., 53, 447, (1984)
[16] Essam, J.W., J. phys. A, 22, 4927, (1989)
[17] Grassberger, P.; Krause, F.; von der Twer, T., J. phys. A, 17, L105, (1984)
[18] Takayasu, H.; Tretyakov, A.Yu., Phys. rev. lett., 68, 3060, (1992)
[19] Cardy, J.; Taüber, U.C., Phys. rev. lett., 77, 4780, (1996)
[20] Rossi, M.; Pastor-Satorras, R.; Vespignani, A., Phys. rev. lett., 85, 1803, (2000)
[21] Family, F.; Vicsek, T., J. phys. A, 18, L75, (1985)
[22] Barabási, A.-L.; Stanley, H.E., Fractal concepts in surface growth, (1995), Cambridge University Press Cambridge · Zbl 0838.58023
[23] Dickman, R.; Muñoz, M.A., Phys. rev. E, 62, 7632, (2000)
[24] Atman, A.P.F.; Moreira, J.G., Eur. phys. J. B, 16, 501, (2000)
[25] Bak, P.; Tang, C.; Wiesenfeld, K.; Bak, P.; Tang, C.; Wiesenfeld, K., Phys. rev. lett., Phys. rev. A, 38, 364, (1988)
[26] D. Dhar, Physica A 263 (1999) 4, and references therein.
[27] Dickman, R.; Vespignani, A.; Zapperi, S., Phys. rev. E, 57, 5095, (1998)
[28] Dickman, R.; Muñoz, M.A.; Vespignani, A.; Zapperi, S., Braz. J. phys., 30, 27, (2000)
[29] Vespignani, A.; Dickman, R.; Muñoz, M.A.; Zapperi, S., Phys. rev. E, 62, 4564, (2000)
[30] R. Dickman, M. Alava, M.A. Muñoz, J. Peltola, A. Vespignani, S. Zapperi, Phys. Rev. E 64 (2001) 056104; e-print: cond-mat/0101381.
[31] M.A. Muñoz, R. Dickman, R. Pastor-Satorras, A. Vespignani, S. Zapperi, in: J. Marro, P.L. Garrido, (Eds.), Modeling Complex Systems, Proceedings of the Sixth Granada Seminar on Computational, AIP Conference Proceedings, Vol. 574, 2001; e-print: cond-mat/0011442.
[32] Manna, S.S., J. phys. A, 24, L363, (1991)
[33] Vespignani, A.; Dickman, R.; Muñoz, M.A.; Zapperi, S., Phys. rev. lett., 81, 5676, (1998)
[34] Narayan, O.; Middleton, A.A., Phys. rev. B, 49, 244, (1994)
[35] Paczuski, M.; Boettcher, S., Phys. rev. lett., 77, 111, (1996)
[36] Alava, M.; Lauritsen, K.B., Europhys. lett., 53, 569, (2001)
[37] Bak, P., How nature works, (1996), Copernicus New York · Zbl 0894.00007
[38] Kinouchi, O.; Prado, C., Phys. rev. E, 59, 4964, (1999)
[39] Köhler, J.; ben-Avraham, D., J. phys. A, 24, L621, (1991)
[40] Jensen, I., Phys. rev. lett., 70, 1465, (1993)
[41] Jensen, I.; Dickman, R., Phys. rev. E, 48, 1710, (1993)
[42] R. Dickman, e-print: cond-mat/9909347.
[43] Mendes, J.F.F.; Dickman, R.; Henkel, M.; Marqués, M.C., J. phys. A, 27, 3019, (1994)
[44] Muñoz, M.A.; Grinstein, G.; Tu, Y., Phys. rev., 56, 5101, (1997)
[45] Ódor, G.; Mendes, J.F.; Santos, M.A.; Marques, M.C., Phys. rev. E, 58, 7020, (1998)
[46] Lipowski, A.; Lopata, M., Phys. rev. E, 60, 1516, (1999)
[47] Ódor, G., Phys. rev. E, 62, R3027, (2000)
[48] Muñoz, M.A.; Grinstein, G.; Dickman, R.; Livi, R.; Muñoz, M.A.; Grinstein, G.; Dickman, R.; Livi, R., Phys. rev. lett., Physica D, 103, 485, (1997)
[49] López, C.; Muñoz, M.A., Phys. rev. E, 56, 4864, (1997)
[50] Grassberger, P.; Chaté, H.; Rousseau, G., Phys. rev. E, 55, 2488, (1997)
[51] Turban, L.; Kaiser, C.; Turban, L., J. phys. A, J. phys. A, 27, L579, (1994)
[52] Ódor, G.; Menyhard, N., Phys. rev. E, 61, 6404, (2000)
[53] Dickman, R.; ben-Avraham, D., Phys. rev. E, 64, 020102(R), (2001)
[54] R. Dickman, D. ben-Avraham, unpublished.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.