zbMATH — the first resource for mathematics

A mesomodel for localisation and damage computation in laminates. (English) Zbl 0992.74065
Summary: We discuss the basic aspects of a material mesomodel dealing with composite laminates and capable of simulating complete fracture phenomena. Attention is focused on damage computation and, in particular, on the description of localization phenomena. Both quasi-static and dynamic loadings are considered.

74R99 Fracture and damage
74E30 Composite and mixture properties
Full Text: DOI
[1] Ladevèze, P., Sur la mécanique de l’endommagement des composites, (), 667-683
[2] Ladevèze, P.; Le Dantec, E., Damage modeling of the elementary ply for laminated composites, Composite sci. technol., 43, 3, 257-267, (1992)
[3] Allix, O.; Ladevèze, P.; Vitecoq, E., Modelling and identification of the mechanical behaviour of composite laminates in compression, Composite sci. technol., 51, 35-42, (1994)
[4] Allix, O.; Bahlouli, N.; Cluzel, C.; Perret, L., Modelling and identification of temperature-dependent mechanical behaviour of the elementary ply in carbon/epoxy laminates, Composite sci. technol., 56, 883-888, (1996)
[5] A. Gasser, P. Ladevèze, P. Peres, Damage modelling for a laminated ceramic composite, Mater. Sci. Engrg., to appear 1998
[6] C.T. Herakovich, Mechanics of Fibrous Composites, Wiley, New York, 1998
[7] P. Ladevèze, About a damage mechanics approach, in: D. Baptiste (Ed.), Mechanics and Mechanisms of Damage in Composite and Multimaterials MEP, 1989, pp. 119-142
[8] Allix, O.; Ladevèze, P., Interlaminar interface modelling for the prediction of laminate delamination, Composite structures, 22, 235-242, (1992)
[9] Allix, O.; Ladevèze, P.; Lévêque, D.; Perret, L., Identification and validation of an interface damage model for delamination prediction, (), 1139-1147
[10] Allix, O.; Deü, J.F., Delay-damage modeling for fracture prediction of laminated composites under dynamic loading, Engrg. trans., 45, 29-46, (1997)
[11] A. Highsmith, K.L. Reifsnider, Stiffness reduction mechanism in composite material, in: ASTM-STP 775, Damage in Composite Materials, 1982, pp. 103-107
[12] Talreja, R., Transverse cracking and stiffness reduction in composite laminates, J. composite mater., 19, 355-375, (1985)
[13] Allen, D.H., Damage evolution in laminates, (), 79-114
[14] J.L. Chaboche, O. Lesné, T. Pottier, Continuum damage mechanics of composites: Towards a unified approach, in: G.Z. Voyiadjis, J.W. Wu, J.L. Chaboche (Eds.), Damage Mechanics in Engineering Materials, Elsevier, Amsterdam, 1998, pp. 3-26
[15] G.Z. Voyiadjis, J.W. Wu, J.L. Chaboche, Damage Mechanics in Engineering Materials, Elsevier, Amsterdam, 1998
[16] Z.P. Bazant, G. Pijaudier-Cabot, Non local damage: Continuum model and localisation instability, J. Appl. Mech. ASME 55 (1988) 287-294 · Zbl 0663.73075
[17] T. Belytschko, D. Lasry, Localisation limiters and numerical strategies softening materials, in: J. Mazars, Z.P. Bazant (Eds.), Elsevier, Amsterdam, 1988, pp. 349-362
[18] Z.P. Bazant, Z. Bittnar, M. Jirasek (Eds.), Fracture and Damage in Quasibrittle Structures, Elsevier, Amsterdam, 1994
[19] Perzyna, P., Dynamic localized fracture in inelastic solids, (), 183-202
[20] Slyuis, L.J.; de Borst, R., Wave propagation and localisation in a rate-dependent cracked medium: model formulation and one dimensional examples, Int. J. solids and structures, 29, 2945-2958, (1992)
[21] Dubé, J.F.; Pijaudier-Cabot, G.; La Borderie, C., Rate dependent damage model for concrete in dynamics, J. engrg. mech., 122, 939-947, (1996)
[22] B. Loret, J.H. Prevost, Dynamic strain localization in elasto- (visco-)plastic solids, Part 1. General formulation and one-dimensional examples, Comput. Meth. Appl. Mech. Engrg. 83 (1990) 247-273 · Zbl 0717.73030
[23] Needleman, A., Material rate dependence and mesh sensitivity in localization problems, Comput. meth. appl. mech. engrg., 67, 69-85, (1988) · Zbl 0618.73054
[24] P. Ladevèze, Towards a fracture theory, in: D.R.J. Owen, E. Onate, E. Hinton (Eds.), Proceedings of the Third International Conference on Computational Plasticity, Part II, Pineridge Press, Cambridge, 1992, pp. 1369-1400
[25] Ladevèze, P., A damage computational method for composite structures, J. computer and structure, 44, 1/2, 79-87, (1992)
[26] Ladevèze, P., A damage computational approach for composites: basic aspects and micromechanical relations, Comput. mech., 17, 142-150, (1995) · Zbl 0850.73231
[27] P. Ladevèze, O. Allix, L. Gornet, D. Lévêque, L. Perret, A computational damage mechanics approach for laminates: Identification and comparison with experimental results, in: G.Z. Voyiadjis, J.W. Wu, J.L. Chaboche (Eds.), Damage Mechanics in Engineering Materials, Elsevier, Amsterdam, 1998, pp. 481-500
[28] Daudeville, L.; Ladevèze, P., A damage mechanics tool for laminate delamination, J. composite structures, 25, 547-555, (1993)
[29] D. Lévêque, Analysis of laminate delamination strength: Interlaminar interface model identification, Doctor Thesis, ENS Cachan, 1998
[30] O. Allix, D. Lévêque, L. Perret, Interlaminar interface model identification and forecast of delamination in composite laminates, Composite Sci. Technol. 56 (1998) 671-678
[31] Bazant, Z.P.; Belytschko, T.B., Wave propagation in a strain softening bar: exact solution, J. engrg. mech., 111, 381-389, (1985)
[32] Hoff, C.; Hugues, T.J.R.; Hulbert, G.; Pahl, P.J., Extended comparison of hilbert – hugues – taylor α1-method and the θ1-method, Comput. meth. appl. mech. engrg., 76, 87-93, (1989) · Zbl 0687.73074
[33] Schellekens, J.C.; De Borst, R., A non-linear finite element approach for the analysis of mode I-free edge delamination in composites, Int. journal solids structures, 30, 9, 1239-1253, (1993) · Zbl 0775.73292
[34] Allix, O.; Corigliano, A.; Ladevèze, P., Damage analysis of interlaminar fracture specimens, Composite structures, 31, 61-74, (1995)
[35] Beer, G., An isoparametric joint/interface element for finite element analysis, Int. J. numer. meth. engrg., 21, 585-600, (1985) · Zbl 0561.73070
[36] J.M. Whithney, Experimental characterization of delamination fracture, in: N.J. Pagano (Ed.), Interlaminar Response of Composite Materials, Comp. Mat. Series 5 (1989) 111-239
[37] H.J. Albertsen, J. Ivens, P. Peters, M. Wevers, I. Verpoest, Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1: Experimental results, Composite Sci. Technol. 54 (1995) 133-145
[38] Kim, R.Y., Experimental observations of free-edge delamination, (), 111-160
[39] Davis, P., Measurement of gic and giic in carbon\epoxy composites, Composite sci. technol., 39, 193-205, (1990)
[40] A.J. Russell, K.N. Street, Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy, in: W.S. Johnson (Ed.), Delamination and Debonding of Materials, ASTM STP 876, Philadelphia, 1985, pp. 349-370
[41] T.K. O’Brien, Characterisation of delamination onset and growth in a composite laminate, in: K.L. Reifsnider (Eds.), Damage in Composite Materials, ASTM-STP 775, 1982, pp. 140-167
[42] F.W. Crossman, A.S.D. Wang, The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates, in: K.L. Reifsnider (Ed.), Damage in Composite Materials, ASTM-STP 775, 1982, pp. 118-139
[43] Robinson, P.; Song, D.Q., A modified DCB specimen for mode I testing of multidirectional laminates, Composite sci. technol., 26, 1554-1577, (1992)
[44] C. Bathias, Une revue des méthodes de caractérisation du délaminage des matériaux composites, in: O. Allix, M.L. Benzeggagh (Eds.), Délaminage: Bilan et perspectives, Journée AMAC/CSMA, Cachan, 1995
[45] O. Allix, Damage analysis of delamination around a hole, in: P. Ladevèze, O.C. Zienkiewicz (Eds.), New advances in Computational Structural Mechanics, Elsevier, Amsterdam, 1992, pp. 411-421
[46] J.O. Hallquist, LS-DYNA3D Theoretical Manual, Livermore Software Technology Corporation, Livermore, USA, 1991
[47] P. Ladevèze, Modeling and simulation of the mechanical behavior of CMCs, in: A.G. Evans, R. Naslain (Eds.), High-temperature Ceramic -Matrix Composites, Ceramic Transaction, 1995, pp. 53-63
[48] Espinoza, H.D., On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation, Int. J. solids and structures, 3105-3128, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.