Fieker, Claus (ed.); Kohel, David R. (ed.) Algorithmic number theory. 5th international symposium, ANTS-V, Sydney, Australia, July 7–12, 2002. Proceedings. (English) Zbl 0992.00024 Lecture Notes in Computer Science. 2369. Berlin: Springer. ix, 517 p. (2002). Show indexed articles as search result. The articles of this volume will be reviewed individually. The preceding symposium (4th, 2000) has been reviewed (see Zbl 0960.00039).Indexed articles:Bhargava, Manjul, Gauss composition and generalizations, 1-8 [Zbl 1058.11030]Coates, John, Elliptic curves – the crossroads of theory and computation, 9-19 [Zbl 1133.11311]Joux, Antoine, The Weil and Tate pairings as building blocks for public key cryptosystems, 20-32 [Zbl 1072.14028]Poonen, Bjorn, Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers, 33-42 [Zbl 1057.11068]Satoh, Takakazu, On \(p\)-adic point counting algorithms for elliptic curves over finite fields, 43-66 [Zbl 1058.11043]Bosma, Wieb; de Smit, Bart, On arithmetically equivalent number fields of small degree, 67-79 [Zbl 1068.11080]Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel, A survey of discriminant counting, 80-94 [Zbl 1058.11076]Everest, Graham; Rogers, Peter; Ward, Thomas, A higher-rank Mersenne problem, 95-107 [Zbl 1071.11072]Fukuda, Takashi; Komatsu, Keiichi, An application of Siegel modular functions to Kronecker’s limit formula, 108-119 [Zbl 1069.11015]Jacobson, Michael J. jun.; van der Poorten, Alfred J., Computational aspects of NUCOMP, 120-133 [Zbl 1058.11074]Louboutin, Stéphane R., Efficient computation of class numbers of real Abelian number fields, 134-147 [Zbl 1067.11081]Vollmer, Ulrich, An accelerated Buchmann algorithm for regulator computation in real quadratic fields, 148-162 [Zbl 1062.11081]Auer, Roland; Top, Jaap, Some genus 3 curves with many points, 163-171 [Zbl 1058.11039]Bruin, Nils; Elkies, Noam D., Trinomials \(ax + bx + c\) and \(ax + bx+ c\) with Galois groups of order 168 and \(8\cdot 168\), 172-188 [Zbl 1058.11044]González-Jiménez, Enrique; González, Josep; Guàrdia, Jordi, Computations on modular Jacobian surfaces, 189-197 [Zbl 1055.11038]Kresch, Andrew; Tschinkel, Yuri, Integral points on punctured Abelian surfaces, 198-204 [Zbl 1071.11032]Shaska, Tony, Genus 2 curves with (3,3)-split Jacobian and large automorphism group, 205-218 [Zbl 1055.14030]Verrill, Helena A., Transportable modular symbols and the intersection pairing, 219-233 [Zbl 1057.11030]Couveignes, Jean-Marc; Henocq, Thierry, Action of modular correspondences around CM points, 234-243 [Zbl 1057.11026]Elkies, Noam D., Curves \(Dy^2= x^3-x\) of odd analytic rank, 244-251 [Zbl 1058.11034]Enge, Andreas; Morain, François, Comparing invariants for class fields of imaginary quadratic fields, 252-266 [Zbl 1058.11077]Stein, William A.; Watkins, Mark, A database of elliptic curves – first report, 267-275 [Zbl 1058.11036]Fouquet, Mireille; Morain, François, Isogeny volcanoes and the SEA algorithm, 276-291 [Zbl 1058.11041]Kim, Hae Young; Park, Jung Youl; Cheon, Jung Hee; Park, Je Hong; Kim, Jae Heon; Hahn, Sang Geun, Fast elliptic curve point counting using Gaussian normal basis, 292-307 [Zbl 1058.11075]Denef, Jan; Vercauteren, Frederik, An extension of Kedlaya’s algorithm to Artin-Schreier curves in characteristic 2, 308-323 [Zbl 1058.11040]Galbraith, Steven D.; Harrison, Keith; Soldera, David, Implementing the Tate pairing, 324-337 [Zbl 1058.11072]Pomerance, Carl; Shparlinski, Igor E., Smooth orders and cryptographic applications, 338-348 [Zbl 1058.11059]Shparlinski, Igor E.; Steinfeld, Ron, Chinese remaindering for algebraic numbers in a hidden field, 349-356 [Zbl 1058.11078]Hess, Florian, An algorithm for computing Weierstrass points, 357-371 [Zbl 1058.14043]Li, Wen-Ching W.; Maharaj, Hiren; Stichtenoth, Henning; Elkies, Noam D., New optimal tame towers of function fields over small finite fields, 372-389 [Zbl 1064.11075]van der Poorten, Alfred J.; Tran, Xuan Chuong, Periodic continued fractions in elliptic function fields, 390-404 [Zbl 1058.11050]Holden, Joshua, Fixed points and two-cycles of the discrete logarithm, 405-415 [Zbl 1058.11073]Horwitz, Jeremy; Venkatesan, Ramarathnam, Random Cayley digraphs and the discrete logarithm, 416-430 [Zbl 1058.05036]Joux, Antoine; Lercier, Reynald, The function field sieve is quite special, 431-445 [Zbl 1057.11069]Leyland, Paul; Lenstra, Arjen; Dodson, Bruce; Muffett, Alec; Wagstaff, Sam, MPQS with three large primes, 446-460 [Zbl 1058.11069]Matsuo, Kazuto; Chao, Jinhui; Tsujii, Shigeo, An improved baby step giant step algorithm for point counting of hyperelliptic curves over finite fields, 461-474 [Zbl 1058.11042]Ebinger, Peter; Teske, Edlyn, Factoring \(N = pq^2\) with the elliptic curve method, 475-490 [Zbl 1058.11068]Steel, Allan, A new scheme for computing with algebraically closed fields, 491-505 [Zbl 1057.12006]Rojas, J. Maurice, Additive complexity and roots of polynomials over number fields and \(\mathfrak p\)-adic fields, 506-515 [Zbl 1057.12005] Cited in 1 Review MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 11-06 Proceedings, conferences, collections, etc. pertaining to number theory 68-06 Proceedings, conferences, collections, etc. pertaining to computer science Keywords:Sydney (Australia); Proceedings; Symposium; ANTS-V; Algorithmic number theory PDF BibTeX XML Cite \textit{C. Fieker} (ed.) and \textit{D. R. Kohel} (ed.), Algorithmic number theory. 5th international symposium, ANTS-V, Sydney, Australia, July 7--12, 2002. Proceedings. Berlin: Springer (2002; Zbl 0992.00024) Full Text: DOI