Badiani, T. V.; Burton, G. R. Vortex rings in \(\mathbb{R}^3\) and rearrangements. (English) Zbl 0991.76012 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457, No. 2009, 1115-1135 (2001). Summary: We study the existence of steady axisymmetric vortex rings in ideal fluid. A functional, comprising a linear combination of kinetic energy and impulse, is to be maximized subject to the constraint that a quantity related to vorticity belongs to a set of rearrangements of a given function. Generalized solutions of a quite specific type are shown to exist, arising as extreme points of a convex extended constraint set. In the case when the given function is the indicator of a set of finite measure, we demonstrate the existence of proper maximizers and local maximizers. Cited in 4 Documents MSC: 76B47 Vortex flows for incompressible inviscid fluids 76M30 Variational methods applied to problems in fluid mechanics 76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids Keywords:variational problem; existence of steady axisymmetric vortex rings; ideal fluid; rearrangements; convex extended constraint set; maximizers; local maximizers PDF BibTeX XML Cite \textit{T. V. Badiani} and \textit{G. R. Burton}, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457, No. 2009, 1115--1135 (2001; Zbl 0991.76012) Full Text: DOI