×

zbMATH — the first resource for mathematics

Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws. (English) Zbl 0991.65072
This paper is concerned with the formulation of conservative finite difference schemes with the total variation diminishing (TVD) property to solve systems of nonlinear hyperbolic conservation laws with source terms.
A technique based on the transformation of the nonhomogeneous problem into a homogeneous form through the definition of a new flux formed by the physical flux and the primitive of the source term is proposed.
The application of the numerical methods described for homogeneous conservation laws needs a new formalization of the classical schemes.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Software:
HE-E1GODF; HLLE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, J.D., Computational fluids dynamics, (1995)
[2] Bermúdez, A.; Vázquez, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. fluids, 23, 1049, (1994) · Zbl 0816.76052
[3] Book, D.L.; Boris, J.P.; Hain, K., Flux-corrected transport II: generalizations of the method, J. comput. phys., 18, 248, (1975) · Zbl 0306.76004
[4] Corberán, J.M.; Gascón, Ll., TVD schemes for the calculation of flow in pipes of variable cross-section, Math. comput. modelling, 21, 85, (1995) · Zbl 0819.76049
[5] J. M. Corberán, and, Ll. Gascón, New method to calculate unsteady 1-D compressible flow in pipes with variable cross-section. Application to the calculation of the flow in intake and exhaust pipes of I. C. engines, in, Proceedings of the ASME Internal Combustion Engine Division Spring Meeting, Marietta, Ohio, April 1995, edited by, T. Uzkan, ICE Engine Modeling, ASME, New York, 1995, Vol, 23, p, 77.
[6] J. M. Corberán, and, Ll. Gascón, Alternative treatment of strong source terms in nonlinear hyperbolic conservation laws. Application to unsteady 1D compressible flow in pipes with variable cross-section, in, Proceedings of the Eurotherm Seminar 53, Mons, Belgium 1997, edited by, J. Henriette, P. Lybaert, and M. Hayek, Advanced Concepts and Techniques in Thermal Modelling, Elsevier, New York, 1998, p, 275.
[7] Embid, P.; Goodman, J.; Majda, A., Multiple steady states for 1-D transonic flow, SIAM J. sci. stat. comput., 5, 21, (1984) · Zbl 0573.76055
[8] Gascón, Ll., Estudio de esquemas en diferencias finitas para el cálculo del flujo compresible, unidimensional, no estacionario y no isoentrópico, (1995), Universidad Politécnica de ValenciaDepartamento de Matemática Aplicada
[9] Glaister, P., Flux difference splitting for the Euler equations in one spatial coordinate with area variation, Int. J. numer. meth. fluids, 8, 97, (1988) · Zbl 0645.76083
[10] Glaz, H.M.; Liu, T.P., The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow, Adv. appl. math., 5, 111, (1984) · Zbl 0598.76065
[11] Harten, A., High resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357, (1983) · Zbl 0565.65050
[12] Harten, A., On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. numer. anal., 21, 1, (1984) · Zbl 0547.65062
[13] Harten, A.; Lax, P.; Van Leer, A., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35, (1983) · Zbl 0565.65051
[14] Hodge, B.K.; Koenig, K., Compressible fluid dynamics, (1995) · Zbl 0829.76001
[15] Jenny, P.; Müller, B., Rankine – hugoniot – riemann solver considering source terms and multidimensional effects, J. comput. phys., 145, 575, (1998) · Zbl 0926.76079
[16] Leveque, R.; Yee, H.C., A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. comput.phys., 86, 187, (1990) · Zbl 0682.76053
[17] Leveque, R., Numerical methods for conservation laws, (1990) · Zbl 0723.65067
[18] Leveque, R., Wave-propagation algorithms for multidimensional hyperbolic systems, J. comput. phys., 131, 327, (1997) · Zbl 0872.76075
[19] Leveque, R., Balancing source terms and flux gradients in high resolution Godunov methods, J. comput. phys., 146, 346, (1998) · Zbl 0931.76059
[20] Marquina, A., Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws, SIAM J. sci. comput., 15, 892, (1994) · Zbl 0805.65088
[21] Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E., Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension, J. comput. phys., 134, 31, (1997) · Zbl 0880.65074
[22] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[23] P. L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, in, Proceedings of Nonlinear Hyperbolic Problems, edited by, C. Carasso, P. Raviart, and D. Serre, Lecture Notes in Mathematics, Springer-Verlag, New York/Berlin, 1986, Vol, 1270, p, 41. · Zbl 0626.65086
[24] Shu, C.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. comput. phys., 77, 439, (1988) · Zbl 0653.65072
[25] Sweby, P.K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. numer. anal., 21, 995, (1984) · Zbl 0565.65048
[26] P. K. Sweby, TVD schemes for inhomogeneous conservation laws, in, Nonlinear Hyperbolic Equations-Theory, Computational Methods and Applications, edited by, J. Ballmann and R. Jeltsch, Notes Numer. Fluid Mech, Vieweg, Braunschweig, 1988, Vol, 24, p, 128.
[27] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1997) · Zbl 0888.76001
[28] van Leer, B., On the relation between the upwind-differencing schemes of Godunov, engquist – osher and roe, SIAM J. sci. stat. comput., 5, 1, (1984) · Zbl 0547.65065
[29] Vázquez-Cendón, M.E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. comput. phys., 148, 497, (1999) · Zbl 0931.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.