×

zbMATH — the first resource for mathematics

Decoherence of Friedmann-Robertson-Walker geometries in the presence of massive vector fields with \(\text{U}(1)\) or \(\text{SO}(3)\) global symmetries. (English) Zbl 0990.83518
Summary: Retrieval of classical behaviour in quantum cosmology is usually discussed in the framework of midi superspace models in the presence of scalar fields and the inhomogeneous modes corresponding either to gravitational or scalar fields. In this work, we propose an alternative model to study the decoherence of homogeneous and isotropic geometries where the scalar field is replaced by a massive vector field with a global internal symmetry. We study here the cases with \(U(1)\) and SO(3) global internal symmetries. The presence of a mass term breaks the conformal invariance and allows for the longitudinal modes of the spin-1 field to be present in the Wheeler-DeWitt equation. In the case of the \(U(1)\) global internal symmetry, we have only one single “classical” degree of freedom while in the case of the SO(3) global symmetry, we are led to consider a simple two-dimensional minisuperspace model. These minisuperspaces are shown to be equivalent to a set of coupled harmonic oscillators where the kinetic term of the longitudinal modes has a coefficient proportional to the inverse of the scale factor. The conditions for a suitable decoherence process and correlations between coordinates and momenta are established. The validity of the semi-classical Einstein equations when massive vector fields (Abelian and non-Abelian) are present is also discussed.

MSC:
83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory
83F05 Cosmology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Caldeira, A.O.; Legget, A.J.; Caldeira, A.O.; Legget, A.J.; Joos, E.; Zeh, H.D.; Unruh, W.; Zurek, W.H.; Zurek, W.H.; Zurek, W.H., Physica A, Ann. phys. (N.Y.), Z. phys. B, Phys. rev. D, Phys. rev. D, Phys. rev. D, 26, 1862, (1982)
[2] Halliwell, J.J., Phys. rev. D, 36, 3626, (1987)
[3] Zeh, H.D.; Kiefer, C.; Kiefer, C., Phys. lett. A, Class. quantum grav., Class. quantum grav., 6, 561, (1989)
[4] Halliwell, J.J., Phys. rev. D, 39, 2912, (1989)
[5] Padmanabhan, T., Phys. rev. D, 39, 2924, (1989)
[6] Gell-Mann, M.; Hartle, J.B., ()
[7] Paz, J.P.; Sinha, S., Phys. rev. D, 44, 1038, (1991)
[8] Paz, J.P.; Sinha, S., Phys. rev. D, 45, 2823, (1992)
[9] Sinha, S.; Hu, B.L., Phys. rev. D, 44, 1028, (1991)
[10] Kiefer, C., Phys. rev. D, 46, 1658, (1992)
[11] Halliwell, J.J.; Hawking, S.W.; Dowker, H.F.; Laflamme, R., Phys. rev. D, Nucl. phys. B, 366, 209, (1991)
[12] Bertolami, O.; Mourão, J.M., Class. quantum grav., 8, 1271, (1991)
[13] Hartle, J.; Hawking, S.W.; Hawking, S.W., Phys. rev. D, Nucl. phys. B, 239, 257, (1984)
[14] Bertolami, O.; Mourão, J.M.; Picken, R.F.; Volobujev, I.P., Int. J. mod. phys. A, 6, 4149, (1991)
[15] Moniz, P.V.; Mourão, J.M., Class. quantum grav., 8, 1815, (1991)
[16] Bento, M.C.; Bertolami, O.; Moniz, P.V.; Mourão, J.M.; Sá, P.M., Class. quantum grav., 10, 285, (1993)
[17] Moniz, P.V.; Mourão, J.M.; Sá, P.M., Class. quantum grav., 10, 517, (1993)
[18] Bento, M.C.; Bertolami, O., Phys. lett. B, 336, 6, (1994)
[19] Bertolami, O.; Moniz, P.V., Decoherence of homogeneous and isotropic geometries in the presence of massive vector fields, (), Lisbon Preprint DF/IST 12.93 · Zbl 0990.83518
[20] Bulletin Board GR-QC 9407025
[21] Bertolami, O.; Moniz, P.V., Decoherence of homogeneous and isotropic metrics in the presence of massive vector fields, (), CERN-DAMTP report · Zbl 0990.83518
[22] Bulletin Board GR-QC 9409042.
[23] Laflamme, R.; Louko, J., Phys. rev. D, 43, 3317, (1991)
[24] Calzetta, E.; Mazzitelli, F., Phys. rev. D, 42, 4066, (1990)
[25] Gangui, A.; Mazzitelli, F.; Calzetta, E., Phys. rev. D, 43, 1853, (1991)
[26] Feynman, R.; Vernon, F., Ann. phys. (N.Y.), 24, 118, (1963)
[27] Schwinger, J.; Keldish, L.; Zhou, G.; Su, Z.; Hao, B.; Yu, L.; Su, Z.; Chen, L.; Yu, X.; Chou, K., J. math. phys, Sov. phys. JETP, Phys. rep., Phys. rev. B, 37, 9810, (1988)
[28] Kiefer, C., Class. quantum grav., 8, 379, (1991)
[29] Dowker, H.F., Nucl. phys. B, 331, 194, (1990)
[30] Ph.D. Thesis, University of Cambridge (unpublished).
[31] D. Kapetanakis, G. Koutsoumbas, A. Lukas and P. Mayr, Bulletin Board HEP-TH 9403131.
[32] Habib, S.; Laflamme, R., Phys. rev. D, 42, 4056, (1990)
[33] Padmanabhan, T.; Singh, T., Class. quantum grav., 7, 412, (1990)
[34] Singh, T.; Padmanabhan, T., Ann. phys. (N.Y.), 196, 296, (1989)
[35] Habib, S., Phys. rev. D, 42, 2566, (1990)
[36] Anderson, A., Phys. rev. D, 42, 585, (1990)
[37] Berry, M., Philos. trans. R. soc., 287, 237, (1977)
[38] Pilati, M., Nucl. phys. B, 132, 138, (1978)
[39] Roman, P., Introduction to quantum field theory, (1969), Wiley New York · Zbl 0197.53502
[40] Gerlach, U.; Lapchinsky, V.; Rubakov, V.; Banks, T.; Hartle, J., Phys. rev., Acta physica Pol. B, Nucl. phys. B, Phys. rev. D, 37, 2818, (1988)
[41] Kiefer, C.; Padmanabhan, T.; Singh, T.P., Class. quantum grav., 8, L185, (1991)
[42] Kiefer, C., Phys. rev. D, 46, 1658, (1992)
[43] Hawking, S.W.; Page, D.N., Nucl. phys. B, 264, 185, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.