zbMATH — the first resource for mathematics

Knot invariants from rational conformal field theories. (English) Zbl 0990.81694
Summary: A framework for studying knot and link invariants from any rational conformal field theory is developed. In particular, minimal models, superconformal models and \(W_{N}\) models are studied. The invariants are related to the invariants obtained from the Wess-Zumino models associated with the coset representations of these models. Possible Chern-Simons representation of these models is also indicated. This generalises the earlier work on knot and link invariants from Chern-Simons theories.

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI arXiv
[1] Schwarz, A.S., New topological invariants arising in the theory of quantized fields, ()
[2] Witten, E., Commun. math phys., 121, 351, (1989)
[3] Isidro, J.M.; Labastida, J.M.F.; Ramallo, A.V.; Labastida, J.M.F.; Ramallo, A.V.; Labastida, J.M.F.; Llatas, P.M.; Ramallo, A.V., Phys. lett. B, Phys. lett. B, Nucl. phys. B, 348, 651, (1991)
[4] J.M. Isidro, J.M.F. Labastida and A.V. Ramallo, US/FT 9/92.
[5] Guadgnini, E., Int. J. mod. phys. A, 5, 877, (1992)
[6] Kaul, R.K.; Govindarajan, T.R.; Kaul, R.K.; Govindarajan, T.R., Nucl. phys. B, Nucl. phys. B, 393, 392, (1993)
[7] Ramadevi, P.; Govindarajan, T.R.; Kaul, R.K., Nucl. phys. B, 402, 548, (1993)
[8] R.K. Kaul, IMSc 93/3, Commun. Math. Phys. (in press).
[9] Yamagishi, K.; Ge, M-L; Wu, Y-S; Wu, Y.; Yamagishi, K.; Horne, J.H., Lett. math. phys., Int. J. modern phys. A, Nucl. phys. B, 334, 669, (1990)
[10] Jones, V.F.R.; Jones, V.F.R., Bull. AMS, Ann. math., 128, 335, (1987)
[11] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.B.R.; Millet, K.; Ocneanu, A.; Przytycki, J.H.; Traczyk, K.P., Bull. AMS, Kobe J. math., 4, 115, (1987)
[12] Kaul, R.K., Nucl. phys. B, 417, 267, (1994)
[13] Goddard, P.; Kent, A.; Olive, D.; Goddard, P.; Kent, A.; Olive, D.; Bardacki, K.; Halpern, M.B.; Halpern, M.B., Phys. lett. B, Commun. math. phys., Phys. rev. D, Phys. rev. D, 4, 2398, (1971)
[14] Ravanini, F., Mod. phys. lett. A, 3, 397, (1988)
[15] A. Gaume and G. Sierra, CERN preprint TH.5540/89.
[16] Kauffman, L.H., Knots and physics, (1991), World Scientific Singapore · Zbl 0749.57002
[17] Blok, B.; Yankielowicz, S., Nucl. phys. B, 321, 717, (1989)
[18] Moore, G.; Seiberg, N., Phys. lett. B, 220, 422, (1989)
[19] Lashkevich, M.Yu., Mod. phys. letts A, 8, 851, (1993)
[20] Mussardo, G.; Sotkov, G.; Stanishkov, M., Int. J. mod. phys. A, (1988)
[21] G. Mussardo, Thesis SISSA, Trieste, Italy;
[22] Kastor, D.; Matsuo, Y.; Yahikozawa, S., Nucl. phys. B, Phys. lett. B, 178, 211, (1986)
[23] Bilal, Adel, Nucl. phys. B, 330, 399, (1990)
[24] CERN preprint TH.6083/91.
[25] Fateev, V.A.; Zamolodchikov, A.B., Nucl. phys. B, 280, 644, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.