×

zbMATH — the first resource for mathematics

On nonabelian duality. (English) Zbl 0990.81690
Summary: We show that nonabelian duality is not a symmetry of a conformal field theory, but rather a symmetry between different theories. We expose a nonlocal symmetry of nonabelian dual theories. We show how, in the case with vanishing isotropy, it can be used to find the inverse dual transformation. Finally, we consider a number of new examples.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Giveon, A.; Rabinovici, E.; Veneziano, G.; Shapere, A.; Wilzcek, F.; Giveon, A.; Malkin, N.; Rabinovici, E., Nucl. phys. B, Nucl. phys. B, Phys. lett. B, 220, 551, (1989)
[2] Ferrara, S.; Lüst, D.; Shapere, A.; Theisen, S.; Lauer, J.; Maas, J.; Nilles, H.P.; Lauer, J.; Maas, J.; Nilles, H.P.; Lerche, W.; Lüst, D.; Warner, N.P.; Ferrara, S.; Lüst, D.; Theisen, S.; Giveon, A.; Malkin, N.; Rabinovici, E.; Font, A.; Ibanez, L.; Lust, D.; Quevedo, F.; Giveon, A.; Smit, D.-J.; Giveon, A.; Porrati, M.; Giveon, A.; Porrati, M.; Candelas, P.; de la Ossa, X.C.; Green, P.S.; Parkes, L.; Kugo, T.; Zwiebach, B., Phys. lett. B, Phys. lett. B, Nucl. phys. B, Phys. lett. B, Phys. lett. B, Phys. lett. B, Phys. lett. B, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Prog. theor. phys., 87, 801, (1992)
[3] Giveon, A.; Roček, M., Nucl. phys. B, 380, 128, (1992)
[4] Buscher, T.; Buscher, T.; Buscher, T., Phys. lett. B, Phys. lett. B, Phys. lett. B, 201, 466, (1988)
[5] Roček, M.; Verlinde, E., Nucl. phys. B, 373, 630, (1992)
[6] Buscher, T., Ph.D. thesis, (May 1988), unpublished
[7] Fridling, B.E.; Jevicki, A., Phys. lett. B, 134, 70, (1984)
[8] Fradkin, E.S.; Tseytlin, A.A., Ann. phys., 162, 31, (1985)
[9] de la Ossa, X.C.; Quevedo, F., Nucl. phys. B, 403, 377, (1993)
[10] Cremmer, E.; Scherk, J.; Ferrara, S.; Cremmer, E.; Julia, B.; Cremmer, E.; Scherk, J.; Schwarz, J.H., Phys. lett. B, Nucl. phys. B, Phys. lett. B, 84, 83, (1979)
[11] Witten, E., Commun. math. phys., 144, 189, (1992)
[12] Polyakov, A.M.; Wiegmann, P.B.; Polyakov, A.M.; Wiegmann, P.B., Phys. lett. B, Phys. lett. B, 141, 223, (1984)
[13] Bardakci, K.; Rabinovici, E.; Säring, B.; Gawedski, K.; Kupianen, A., Nucl. phys. B, Nucl. phys. B, 320, 625, (1989)
[14] Green, M.B.; Schwarz, J.H.; Witten, E., Superstring theory, (1987), Cambridge Univ. Press Cambridge
[15] M. Gasperini, R. Ricci and G. Veneziano, A problem with nonabelian duality?, preprint CERN-TH-6960-93, hep-th/9308112.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.