×

zbMATH — the first resource for mathematics

String theory dynamics in various dimensions. (English) Zbl 0990.81663
Summary: The strong coupling dynamics of string theories in dimension \(d\geqslant 4\) are studied. It is argued, among other things, that eleven-dimensional supergravity arises as a low energy limit of the ten-dimensional Type IIA superstring, and that a recently conjectured duality between the heterotic string and Type IIA superstrings controls the strong coupling dynamics of the heterotic string in five, six, and seven dimensions and implies S-duality for both heterotic and Type II strings.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
83E50 Supergravity
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Sen, A., Strong-weak coupling duality in four-dimensional string theory, Int. J. mod. phys. A, 9, 3707, (1994), hepth/9402002 · Zbl 0985.81635
[2] J.H. Schwarz, Evidence for non-perturbative string symmetries, hep-th/9411178.
[3] Hull, C.M.; Townsend, P.K., Unity of superstring dualities, Nucl. phys. B, 438, 109, (1995) · Zbl 1052.83532
[4] C. Vafa, unpublished.
[5] Nahm, W., Supersymmetries and their representations, Nucl. phys. B, 135, 149, (1978) · Zbl 1156.81464
[6] Cremmer, E.; Julia, B.; Scherk, J., Supergravity theory in 11 dimensions, Phys. lett. B, 76, 409, (1978)
[7] M. Duff, Strong/weak coupling duality from the dual string, hep-th/9501030, Nucl. Phys. B, to be published.
[8] Narain, K.; Narain, K.; Samadi, M.; Witten, E., A note on the toroidal compactification of heterotic string theory, Phys. lett. B, Nucl. phys. B, 279, 369, (1987)
[9] Ginsparg, P., On toroidal compactification of heterotic superstrings, Phys. rev. D, 35, 648, (1987)
[10] Dine, M.; Huet, P.; Seiberg, N., Large and small radius in string theory, Nucl. phys. B, 322, 301, (1989)
[11] Dai, J.; Leigh, R.G.; Polchinski, J., New connections between string theories, Mod. phys. lett. A, 4, 2073, (1989)
[12] P. Townsend, The eleven-dimensional supermembrane revisited, hepth-9501068. · Zbl 1156.81456
[13] Duff, M.F.; Duff, M.F.; Lu, J.X., Duality rotations in membrane theory, Nucl. phys. B, Nucl. phys. B, 347, 394, (1990) · Zbl 0967.81520
[14] N. Seiberg, Electric-magnetic duality in supersymmetric non-abelian gauge theories, hepth/9411149. · Zbl 1020.81912
[15] Bars, I., First massive level and anomalies in the supermembrane, Nucl. phys. B, 308, 462, (1988)
[16] Carr, J.L.; Gates, S.J.; Oerter, R.N., D = 10, N = 2a supergravity in superspace, Phys. lett. B, 189, 68, (1987)
[17] Witten, E.; Olive, D., Supersymmetry algebras that include central charges, Phys. lett. B, 78, 97, (1978)
[18] Gibbons, G.W.; Hull, C.M., A bogolmol’ny bound for general relativity and solitons in N = 2 supergravity, Phys. lett. B, 109, 190, (1982)
[19] Kallosh, R.; Linde, A.; Ortin, T.; Peet, A.; Van Proeyen, A., Supersymmetry as a cosmic censor, Phys. rev. D, 46, 5278, (1992)
[20] Shenker, S., The strength of non-perturbative effects in string theory, ()
[21] Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. phys. B, 426, 19, (1994) · Zbl 0996.81510
[22] Huq, M.; Namazie, M.A., Kaluza-Klein supergravity in ten dimensions, Class. quant. grav., 2, 293, (1985) · Zbl 0575.53071
[23] Cremmer, E.; Julia, B.; Julia, B., Group disintegrations, (), 159, 331, (1979)
[24] ()
[25] Sen, A., Strong-weak coupling duality in three-dimensional string theory, Nucl. phys. B, 434, 179, (1995), hepth/9408083 · Zbl 1020.81802
[26] Dabholkar, A.; Harvey, J.A.; Dabholkar, A.; Gibbons, G.; Harvey, J.A.; Ruiz Ruiz, F., Superstrings and solitons, Phys. rev. lett., Nucl. phys. B, 340, 33, (1990)
[27] Strominger, A., Heterotic solitons, Nucl. phys. B, 343, 167, (1990)
[28] Callan, C.G.; Harvey, J.A.; Strominger, A., World-sheet approach to heterotic instantons and solitons, Nucl. phys. B, 359, 611, (1991)
[29] J. Gauntlett and J.A. Harvey, S-duality and the spectrum of magnetic monopoles in heterotic string theory, hepth/9407111.
[30] Seiberg, N., Observations on the moduli space of superconformal field theories, Nucl. phys. B, 303, 286, (1988)
[31] P. Aspinwall and D. Morrison, String theory on K3 surfaces, DUK-TH-94-68, IASSNS-HEP-94/23.
[32] Romans, L., Self-duality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. phys. B, 276, 71, (1986)
[33] Giveon, A.; Porrati, M.; Rabinovici, E., Target space duality in string theory, Phys. rep., 244, 77, (1994)
[34] A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, hepth-9502072, Nucl. Phys. B, to be published. · Zbl 0990.81736
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.