×

zbMATH — the first resource for mathematics

Duality of \((0,2)\) string vacua. (English) Zbl 0990.81659
Summary: We discuss a duality of \((0,2)\) heterotic string vacua which implies that certain pairs of \((0,2)\) Calabi-Yau compactifications on topologically distinct target manifolds yield identical string theories. Some complex structure moduli in one model are interpreted in the dual model as deforming the holomorphic structure of the vacuum gauge bundle (and vice versa). A better understanding of singularity resolution for \((0,2)\) models may reveal that this duality of compactifications on singular spaces is part of a larger story, involving smooth topology-changing processes which interpolate between the \((0,2)\) models on the resolved spaces.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32J81 Applications of compact analytic spaces to the sciences
32G81 Applications of deformations of analytic structures to the sciences
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Banks, T.; Dixon, L.; Friedan, D.; Martinec, E., Nucl. phys. B, 299, 613, (1988)
[2] Witten, E., Nucl. phys. B, 268, 79, (1986)
[3] Distler, J.; Greene, B., Nucl. phys. B, 304, 1, (1988)
[4] S. Kachru, Some three generation (0,2) Calabi-Yau models, Harvard preprint to appear. · Zbl 0917.14024
[5] Dine, M.; Seiberg, N.; Wen, X.; Witten, E.; Dine, M.; Seiberg, N.; Wen, X.; Witten, E., Nucl. phys. B, Nucl. phys. B, 289, 319, (1987)
[6] Distler, J.; Kachru, S., Nucl. phys. B, 430, 13, (1994), hep-th/9406090
[7] E. Silverstein and E. Witten, to appear.
[8] Greene, B.; Plesser, M., Nucl. phys. B, 338, 15, (1990)
[9] Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L., Nucl. phys. B, 359, 21, (1991)
[10] ()
[11] Distler, J.; Kachru, S., Nucl. phys. B, 413, 213, (1994), hep-th/9309110
[12] Witten, E., Nucl. phys. B, 403, 159, (1993), hep-th/9301042
[13] Aspinwall, P.; Greene, B.; Morrison, D., Nucl. phys. B, 416, 414, (1994), hep-th/9309097
[14] Uhlenbeck, K.; Yau, S.T., Comm. pure appl. math., Vol. XXXIX, S257, (1986)
[15] Martinec, E., Criticality, catastrophes and compactifications, () · Zbl 0737.58060
[16] Vafa, C.; Warner, N.; Greene, B.; Vafa, C.; Warner, N., Phys. lett. B, Nucl. phys. B, 324, 371, (1989)
[17] Kachru, S.; Witten, E., Nucl. phys. B, 407, 637, (1993), hep-th/9307038
[18] Strominger, A.; Witten, E., Commun. math. phys., 101, 341, (1985)
[19] Candelas, P., Nucl. phys. B, 298, 458, (1988)
[20] Kawai, T.; Mohri, K., Nucl. phys. B, 425, 191, (1994), hep-th/9402148
[21] Distler, J.; Greene, B., Nucl. phys. B, 309, 295, (1988)
[22] Giveon, A.; Porrati, M.; Rabinovici, E., Phys. rep., 244, 77, (1994), hep-th/9401139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.