×

zbMATH — the first resource for mathematics

All abelian symmetries of Landau-Ginzburg potentials. (English) Zbl 0990.81635
Summary: We present an algorithm for determining all inequivalent abelian symmetries of non-degenerate quasi-homogeneous polynomials and apply it to the recently constructed complete set of Landau-Ginzburg potentials for \(N=2\) superconformal field theories with \(c=9\). A complete calculation of the resulting orbifolds without torsion increases the number of known spectra by about one third. The mirror symmetry of these spectra, however, remains at the same low level as for untwisted Landau-Ginzburg models. This happens in spite of the fact that the subclass of potentials for which the Berglund-Hübsch construction works features perfect mirror symmetry. We also make first steps into the space of orbifolds with \(Z_2\) torsions by including extra trivial fields.
Reviewer: Reviewer (Berlin)

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32J81 Applications of compact analytic spaces to the sciences
32J17 Compact complex \(3\)-folds
14J30 \(3\)-folds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Martinec, E.; Vafa, C.; Warner, N., Phys. lett., Phys. lett., B218, 51, (1989)
[2] Lerche, W.; Vafa, C.; Warner, N.P., Nucl. phys., B324, 427, (1989)
[3] Boucher, W.; Friedan, D.; Kent, A.; Banks, T.; Dixon, L.; Friedan, D.; Martinec, E.; Hull, C.; Witten, E., Phys. lett., Nucl. phys., Phys. lett., B160, 398, (1985)
[4] Greene, B.R.; Vafa, C.; Warner, N.P., Nucl. phys., B324, 371, (1989)
[5] Superstring vacua, preprint HUTP-89/A057
[6] Intriligator, K.; Vafa, C., Nucl. phys., B339, 95, (1990)
[7] Kreuzer, M.; Skarke, H., Nucl. phys., B388, 113, (1993)
[8] A. Klemm and R. Schimmrigk, preprint hep-th/9204060, CERN-TH-6459/92, HD-THEP-92-13, TUM-TP-142/92
[9] Vafa, C., Nucl. phys., B273, 592, (1986)
[10] Hübsch, T.; Candelas, P., Lectures on complex manifolds, (), (1992), World Scientific Singapore
[11] Candelas, P.; Lynker, M.; Schimmrigk, R., Nucl. phys., B341, 383, (1990)
[12] Greene, B.R.; Plesser, M.R., Nucl. phys., B338, 15, (1990)
[13] Berglund, P.; Hübsch, T., Nucl. phys., B393, 377, (1993)
[14] Kreuzer, M.; Skarke, H., Commun. math. phys., 150, 137, (1992)
[15] Gepner, D.; Gepner, D., (), B296, 757, (1988)
[16] Bourbaki, N.; Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N., Lie groups and Lie algebras, (), (1971), Hermann Paris, ch. V,sect. 5.1
[17] Gepner, D., Phys. lett., B199, 380, (1987)
[18] Kreuzer, M.; Schimmrigk, R.; Skarke, H., Nucl. phys., B372, 61, (1992)
[19] G. Aldazabal, I. Allekotte, E. Andrés and C. Núñez, Bariloche preprint hep-th/9209059
[20] J. Fuchs and M. Kreuzer, preprint hep-th/9210053, CERN-TH.6669/92
[21] Schimmrigk, R., Phys. lett., B193, 175, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.