×

zbMATH — the first resource for mathematics

Gravitating monopole solutions. II. (English) Zbl 0990.81574
Summary: We present analytical and numerical results for static, spherically symmetric solutions of the Einstein-Yang-Mills-Higgs equations corresponding to magnetic monopoles and non-abelian magnetically charged black holes. In the limit of infinite Higgs mass we give an existence proof for these solutions. The stability of the abelian extremal Reissner-Nordstrøm black holes is reanalyzed.

MSC:
81T20 Quantum field theory on curved space or space-time backgrounds
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Breitenlohner, E.; Forgács, P.; Maison, D., Nucl. phys. B, 383, 357, (1992)
[2] van Nieuwenhuizen, P.; Wilkinson, D.; Perry, J., Phys. rev. D, 13, 778, (1976)
[3] Lee, K.-Y.; Nair, V.P.; Weinberg, E.J., Phys. rev. D, 45, 2751, (1992)
[4] Aichelburg, P.C.; Bizon, P., Phys. rev. D, 48, 607, (1993)
[5] Smoller, J.A.; Wasserman, A.G., Commun. math. phys., 151, 303, (1993)
[6] Breitenlohner, P.; Forgács, P.; Maison, D., Commun. math. phys., 163, 141, (1994)
[7] Bartnik, R.; McKinnon, J., Phys. rev. lett., 61, 141, (1988)
[8] Künzle, H.P.; Masood-ul-Alam, A.K.M.; Volkov, M.S.; Galtsov, D.V.; Bizon, P, J. math. phys., JETP lett., Phys. rev. lett., 64, 2844, (1990)
[9] Barriola, M.; Vilenkin, A., Phys. rev. lett., 63, 341, (1989)
[10] Lee, K.; Nair, V.P.; Weinberg, J., Phys. rev. lett., 68, 1100, (1992)
[11] Bergmann, P.G.; Cahen, M.; Komar, A.B., J. math. phys., 6, 1, (1965)
[12] Coddington, E.A.; Levinson, N., Theory of ordinary differential equations, (1955), McGraw-Hill New York · Zbl 0042.32602
[13] Hartman, P., Ordinary differential equations, (1982), Birkhäuser Boston · Zbl 0125.32102
[14] Breitenlohner, P.; Maison, D., On the limiting solution of the bartnik-mckinnon family, Preprint MPI-pht/94-20, (May 1994), gr-qc 9405014, subm. to Commun. Math. Phys.
[15] Hollmann, H., Phys. lett. B, 338, 181, (1994)
[16] Straumann, N.; Zhou, Z.-H., Phys. lett. B, 237, 353, (1990)
[17] Moncrief, V., Phys. rev. D, 12, 1526, (1975)
[18] Bizon, P.; Wald, R.M., Phys. lett. B, 267, 173, (1991)
[19] Harrison, B.K.; Thorne, K.S.; Wakano, M.; Wheeler, J.A., Gravitation theory and gravitational collapse, (1965), Univ. Chicago Press Chicago
[20] Dunford, N.; Schwartz, J.T., Linear operators II, (1963), Interscience Publishers New York
[21] Gel’fand, I.M.; Fomin, S.V., Calculus of variations, (1963), Prentiice Hall Englewood Cliffs, N.J
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.