×

zbMATH — the first resource for mathematics

A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. (English) Zbl 0990.76048
Summary: The work focuses on the application of higher-order, hierarchical basis functions to incompressible Navier-Stokes equations using a stabilized finite element method. It is shown on a variety of problems that the most cost-effective simulations (in terms of CPU time, memory, and disk storage) can be obtained using higher-order basis functions when compared with the traditional linear basis. In addition, we present algorithms for efficient implementation of these methods within traditional finite element data structures.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brooks, Computer Methods in Applied Mechanics and Engineering 32 pp 199– (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[2] Hughes, Computer Methods in Applied Mechanics and Engineering 73 pp 173– (1989) · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[3] Hughes, Computer Methods in Applied Mechanics and Engineering 127 pp 387– (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[4] R?sso, Computer Methods in Applied Mechanics and Engineering 132 pp 335– (1996) · Zbl 0887.76038 · doi:10.1016/0045-7825(96)01020-1
[5] Brezzi, Computer Methods in Applied Mechanics and Engineering 145 pp 329– (1997) · Zbl 0904.76041 · doi:10.1016/S0045-7825(96)01221-2
[6] Franca, Computer Methods in Applied Mechanics and Engineering 99 pp 209– (1992) · Zbl 0765.76048 · doi:10.1016/0045-7825(92)90041-H
[7] Hierarchical basis in stabilized finite element methods for compressible flows. SCOREC Report 11-2000, Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY. Computer Methods in Applied Mechanics and Engineering, 2000 to appear.
[8] Jansen, Computer Methods in Applied Mechanics and Engineering 105 pp 405– (1993) · Zbl 0777.76052 · doi:10.1016/0045-7825(93)90066-7
[9] Jansen, Computer Methods in Applied Mechanics and Engineering 174 pp 299– (1999) · Zbl 0958.76041 · doi:10.1016/S0045-7825(98)00301-6
[10] Taylor, Computer Methods in Applied Mechanics and Engineering 158 pp 155– (1998) · Zbl 0953.76058 · doi:10.1016/S0045-7825(98)80008-X
[11] Beall, International Journal for Numerical Methods in Engineering 40 pp 1573– (1997) · doi:10.1002/(SICI)1097-0207(19970515)40:9<1573::AID-NME128>3.0.CO;2-9
[12] The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987.
[13] Shephard, Computer Methods in Applied Mechanics and Engineering 147 pp 209– (1997) · Zbl 0886.65004 · doi:10.1016/S0045-7825(97)00026-1
[14] Demkowicz, Computer Methods in Applied Mechanics and Engineering 77 pp 79– (1989) · Zbl 0723.73074 · doi:10.1016/0045-7825(89)90129-1
[15] Carnevali, International Journal for Numerical Methods in Engineering 36 pp 3759– (1993) · Zbl 0795.73067 · doi:10.1002/nme.1620362202
[16] Stabilized finite element methods for fluid dynamics using a hierarchical basis. PhD thesis, Rensselaer Polytechnic Institute, 1999.
[17] Hughes, Computing and Visualization in Science 3 pp 47– (2000) · Zbl 0998.76040 · doi:10.1007/s007910050051
[18] Chen, Computer Methods in Applied Mechanics and Engineering 137 pp 89– (1996) · Zbl 0877.65004 · doi:10.1016/0045-7825(96)01051-1
[19] Gresho, Computer Methods in Applied Mechanics and Engineering 87 pp 201– (1991) · Zbl 0760.76018 · doi:10.1016/0045-7825(91)90006-R
[20] Jansen, Computer Methods in Applied Mechanics and Engineering 174 pp 153– (1999) · Zbl 0956.76044 · doi:10.1016/S0045-7825(98)00284-9
[21] A generalized-? method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Contributed to a special volume of Computer Methods in Applied Mechanics and Engineering devoted to the Japan-US Symposium on FEM in Large-scale CFD, SCOREC Report 10-1999, 1999.
[22] http://www.acusim.com, 2000.
[23] Using MPI. MIT Press: Cambridge, 1994.
[24] Multilevel diffusion algorithms for repartitioning of adaptive meshes. Technical Report #97-013, University of Minnesota, Department of Computer Science and Army HPC Center, 1997.
[25] Iterative Methods for Sparse Linear Systems. PWS Publishing: Boston, 1996.
[26] Kovasznay, Proceedings of the Cambridge Philosophical Society 44 pp 58– (1948) · doi:10.1017/S0305004100023999
[27] Gartling, International Journal of Numerical Methods in Fluids 11 pp 953– (1990) · doi:10.1002/fld.1650110704
[28] Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press: Cambridge, 1987.
[29] Ghia, Journal of Computational Physics 48 pp 387– (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.