zbMATH — the first resource for mathematics

Einstein-Weyl geometry, the dKP equation and twistor theory. (English) Zbl 0990.53052
The authors study the Einstein-Weyl (EW) equations in relation to integrable systems, and in particular the dispersionless Kadomtsev-Petviashvili (dKP) equation. They construct and characterise a class of new EW structures in \(2+1\) dimensions out of solutions to the dKP equation. As a result they show that the dKP solutions give rise to hyper-Kähler metrics in four dimensions. Moreover they construct some new examples of EW structures and obtain all solutions of the dKP equation with the property that the associated EW space admits a family of divergence-free, shear-free geodesic congruences. These solutions give rise to new EW metrics depending on the arbitrary function of one variable.

53C28 Twistor methods in differential geometry
32L25 Twistor theory, double fibrations (complex-analytic aspects)
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
35Q55 NLS equations (nonlinear Schrödinger equations)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
Full Text: DOI arXiv
[1] Boyer, C., A note on hyper-Hermitian four-manifolds, Proc. am. math. soc., 102, 157-164, (1988) · Zbl 0642.53073
[2] D.M. Calderbank, H. Pedersen, Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier 50 (2000), in press. · Zbl 0970.53027
[3] D.M. Calderbank, K.P. Tod, Einstein metrics, hypercomplex structures and the Toda field equation, Diff. Geom. Appl. (2000), in press. · Zbl 1031.53071
[4] Cartan, E., Sur une classe d’espaces de Weyl, Ann. sci. ecole norm. supp., 60, 1-16, (1943) · Zbl 0028.30802
[5] M. Dunajski, The nonlinear graviton as an integrable system, D.Phil. Thesis, Oxford, 1998.
[6] Dunajski, M., The twisted photon associated to hyper-Hermitian four manifolds, J. geom. phys., 30, 266-281, (1999) · Zbl 0959.53022
[7] M. Dunajski, K.P. Tod, Einstein-Weyl structures from hyper-Kähler metrics with conformal Killing vectors, Diff. Geom. Appl. (1999), submitted for publication. · Zbl 0997.53036
[8] Finley, J.D.; Plebański, J.F., The classification of all \(H\) spaces admitting a Killing vector, J. math. phys., 20, 1938, (1979) · Zbl 0422.53025
[9] Gauduchon, P.; Tod, K.P., Hyper-Hermitian metrics with symmetry, J. geom. phys., 25, 291-304, (1998) · Zbl 0945.53042
[10] Gibbons, G.W.; Hawking, S.W., Gravitational multi-instantons, Phys. lett. B, 78, 430-432, (1978)
[11] J. Gibbons, The Zabolotskaya-Khokhlov equation and the inverse scattering problem of classical mechanics, in: S. Takeno (Ed.), Dynamical Problems in Soliton Theory, 1985.
[12] Gibbons, J.; Kodama, Y., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. lett. A, 135, 167-170, (1989)
[13] Grant, J.D.E.; Strachan, I.A.B., Hypercomplex integrable systems, Nonlinearity, 12, 1247-1261, (1999) · Zbl 0934.35181
[14] P. Guha, K. Takasaki, Dispersionless hierarchies, Hamilton-Jacobi theory and twistor correspondences, 1997, solv-int/9705013. · Zbl 0930.35165
[15] N. Hitchin, Complex manifolds and Einstein’s equations, in: H.D. Doebner, T.D. Palev (Eds.), Twistor Geometry and Non-linear Systems, Lecture Notes in Mathematics, Vol. 970, Springer, Berlin, 1982. · Zbl 0507.53025
[16] Jones, P.; Tod, K.P., Minitwistor spaces and einstein – weyl spaces, Classical quantum gravity, 2, 565-577, (1985) · Zbl 0575.53042
[17] Kodama, Y., A method for solving the dispersionless KP equation and its exact solutions, Phys. lett. A, 129, 223-226, (1988)
[18] Kodaira, K., On stability of compact submanifolds of complex manifolds, Am. J. math., 85, 79-94, (1963) · Zbl 0173.33101
[19] LeBrun, C.R., Explicit self-dual metrics on \(CP\^{}\{2\}#⋯#CP\^{}\{2\}\), J. diff. geom., 34, 233-253, (1991)
[20] L.J. Mason, Generalized twistor correspondences, d-bar problems, and the KP equations, in: S. Huggett (Ed.), Twistor Theory, Lecture Notes in Pure and Applied Mathematics, Vol. 169, Marcel Dekker, New York. · Zbl 0832.32018
[21] Mason, L.J.; Newman, E.T., A connection between Einstein and yang – mills equations, Commun. math. phys., 121, 659-668, (1989) · Zbl 0668.53048
[22] L.J. Mason, N.M.J. Woodhouse, Integrability, self-duality, and twistor theory, LMS Monographs New Series, Vol. 15, Oxford Univ. Press, Oxford, 1996. · Zbl 0856.58002
[23] Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. relativity gravitation, 7, 31-52, (1976) · Zbl 0354.53025
[24] R. Penrose, Rindler, Spinors and Space-Time, Vols. 1 and 2, Cambridge Univ. Press, Cambridge, 1986.
[25] Pedersen, H.; Tod, K.P., Three-dimensional einstein – weyl geometry, Adv. math., 97, 74-109, (1993) · Zbl 0778.53041
[26] Plebański, J.F., Some solutions of complex Einstein equations, J. math. phys., 16, 2395-2402, (1975)
[27] Strachan, I.A.B., The Moyal bracket and the dispersionless limit of the KP hierarchy, J. phys. A, 28, 1967-1976, (1995) · Zbl 0829.35116
[28] Takasaki, K.; Takebe, T., Integrable hierarchies and dispersionless limit, Rev. math. phys., 7, 743-808, (1995) · Zbl 0838.35117
[29] Tod, K.P., Scalar-flat Kähler metrics from Painlevé-III, Classical quantum gravity, 12, 1535-1547, (1995) · Zbl 0828.53061
[30] Ward, R.S., Self-dual space – times with cosmological constant, Commun. math. phys., 78, 1-17, (1980) · Zbl 0468.53019
[31] Ward, R.S., Twistors in 2+1 dimensions, J. math. phys., 30, 2246-2251, (1989) · Zbl 0699.58065
[32] Ward, R.S., Einstein – weyl spaces and SU(∞) Toda fields, Classical quantum gravity, 7, L95-L98, (1990) · Zbl 0687.53044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.