zbMATH — the first resource for mathematics

Blowup estimates for a semilinear reaction diffusion system. (English) Zbl 0990.35065
The author deals with the problem of blow-up estimates for positive solutions of the semilinear parabolic system: \[ u_t=\Delta u +u^\alpha v^p,\qquad v_t=\Delta v +u^q v^\beta, \] subject to zero Dirichlet boundary condition on a ball of \(\mathbb{R}^N\) with nonnegative continuous initial data. The results improve previous work of S. N. Zheng [J. Math. Anal. Appl. 232, 293-311 (1999; Zbl 0935.35042)]. The method of proof relies on the maximum principle.

35K57 Reaction-diffusion equations
35K50 Systems of parabolic equations, boundary value problems (MSC2000)
35B50 Maximum principles in context of PDEs
Full Text: DOI
[1] Caristi, G.; Mitidieri, E., Blow-up estimates of positive solutions of a parabolic system, J. differential equations, 113, 265-271, (1994) · Zbl 0807.35066
[2] M. Chlebik, and, M. Fila, From critical exponents to blow-up rates for parabolic problems, preprint. · Zbl 0980.35057
[3] Deng, K., Blow-up rates for parabolic systems, Z. angew. math. phys., 47, 132-143, (1996) · Zbl 0854.35054
[4] Deng, K., The blow-up behavior of the heat equation with Neumann boundary conditions, J. math. anal. appl., 188, 641-650, (1994) · Zbl 0809.35006
[5] Deng, K.; Levine, H.A., The role of critical exponents in blow-up theorems: the sequel, J. math. anal. appl., 243, 85-126, (2000) · Zbl 0942.35025
[6] Escobedo, M.; Herrero, M.A., A semilinear parabolic system in a bounded domain, Ann. mat. pura appl., 165, 315-336, (1993) · Zbl 0806.35088
[7] Fila, M.; Quittner, P., The blow-up rate for a semilinear parabolic system, J. math. anal. appl., 238, 468-476, (1999) · Zbl 0934.35062
[8] Friedman, A.; McLeod, B., Blow-up of positive solutions of semilinear heat equations, Indiana univ. math. J., 34, 425-447, (1985) · Zbl 0576.35068
[9] Giga, Y.; Kohn, V., Characterizing blow-up using similarity variables, Indiana univ. math. J., 36, 425-447, (1987)
[10] Hu, B., Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition, Differential integral equations, 9, 891-901, (1996) · Zbl 0852.35072
[11] Hu, B.; Yin, H.M., The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition, Trans. amer. math. soc., 346, 117-135, (1994) · Zbl 0823.35020
[12] Lin, Z.G.; Wang, M.X., The blow-up properties of solutions to semilinear heat equations with nonlinear boundary conditions, Z. angew. math. phys., 50, 361-374, (1999) · Zbl 0926.35062
[13] Liu, W.X., The blow-up rate of solutions of semilinear heat equations, J. differential equations, 77, 104-122, (1989) · Zbl 0672.35035
[14] Pao, C.V., Nonlinear parabolic and elliptic equations, (1992), Plenum New York/London · Zbl 0780.35044
[15] Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P., Blow-up in quasilinear parabolic equations, (1995), de Gruyter Berlin · Zbl 1020.35001
[16] Wang, M.X., Global existence and finite time blow up for a reaction-diffusion system, Z. angew. math. phys., 51, 160-167, (2000) · Zbl 0984.35088
[17] M. X. Wang, Blow-up rate estimates for semilinear parabolic systems, J. Differential Equations, to appear. · Zbl 0979.35065
[18] Weissler, F.B., An L∞ blow-up estimate for a nonlinear heat equation, Comm. pure appl. math., 38, 291-295, (1985) · Zbl 0592.35071
[19] Zheng, S.N., Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system, J. math. anal. appl., 232, 293-311, (1999) · Zbl 0935.35042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.