zbMATH — the first resource for mathematics

On periods for string compactifications. (English) Zbl 0990.32501
Summary: Motivated by recent developments in the computation of periods for string compactifications with \(c=9\), we develop a complementary method which also produces a convenient basis for related calculations. The models are realized as Calabi-Yau hypersurfaces in weighted projective spaces of dimension four or as Landau-Ginzburg vacua. The calculation reproduces known results and also allows a treatment of Landau-Ginzburg orbifolds with more than five fields.

32G20 Period matrices, variation of Hodge structure; degenerations
32G81 Applications of deformations of analytic structures to the sciences
32J81 Applications of compact analytic spaces to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv
[1] Hübsch, T., Calabi-Yau manifolds - A bestiary for physicists, (1992), World Scientific Singapore · Zbl 0771.53002
[2] Candelas, P.; Green, P.S.; Hübsch, T., Nucl. phys., B330, 49, (1990)
[3] Strominger, A., Commun. math. phys., 133, 163, (1990)
[4] Candelas, P.; de la Ossa, X.C., Nucl. phys., B355, 455, (1991)
[5] Distler, J.; Greene, B.R., Nucl. phys., B309, 295, (1988)
[6] Candelas, P., Nucl. phys., B298, 458, (1988)
[7] Berglund, P.; Hübsch, T.; Parkes, L., Commun. math. phys., 148, 57, (1992)
[8] Berglund, P.; Hübsch, T., Nucl. phys., B411, 223, (1994)
[9] Berglund, P.; Hübsch, T., (), B393, 388, (1993)
[10] Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L., Nucl. phys., B359, 21, (1991)
[11] P. Berglund, P. Candelas, X. de la Ossa, A. Font, T. Hübsch, D. Jančić and F. Quevedo, Periods for Calabi-Yau and Landau-Ginzburg vacua, CERN preprint CERN-TH 6865/93
[12] Candelas, P.; Derrick, E.; Parkes, L., Nucl. phys., B407, 115, (1993)
[13] Cecotti, S.; Vafa, C., Nucl. phys., B367, 359-461, (1991)
[14] Hübsch, T., Commun. math. phys., 108, 291, (1987)
[15] Green, P.; Hübsch, T., Commun. math. phys., 109, 99, (1987)
[16] Candelas, P.; Dale, A.M.; Lütken, C.A.; Schimmrigk, R., Nucl. phys., B298, 493, (1988)
[17] Greene, B.; Roan, S.-S.; Yau, S.-T., Commun. math. phys., 142, 245, (1991)
[18] Atiyah, M.; Bott, R.; Gårding, L., Acta math., 131, 145, (1973)
[19] Candelas, P.; Lynker, M.; Schimmrigk, R., Nucl. phys., B341, 383, (1990)
[20] Erdélyi, A.; Oberhettinger, F.; Magnus, W.; Tricomi, F.G., Higher transcendental functions, 3 Vols., (1953), McGraw-Hill New York · Zbl 0052.29502
[21] Arnold, V.I.; Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N., Singularities of differentiable maps, (), 19, (1985), Birkhäuser Boston
[22] M. Kreuzer and H. Skarke, On the classification of quasihomogenous functions, CERN preprint CERN-TH-6373/92
[23] Kreuzer, M.; Skarke, H., Nucl. phys., B388, 113, (1992)
[24] A. Klemm and R. Schimmrigk, Landau-Ginzburg vacua, CERN preprint CERN-TH-6459/92, Universität Heidelberg report HD-THEP-92-13
[25] Lynker, M.; Schimmrigk, R., Phys. lett., B249, 237, (1990)
[26] Vafa, C.; Warner, N.P.; Martinec, E., Phys. lett., Phys. lett., B217, 431, (1989)
[27] Schimmrigk, R., Phys. rev. lett., 70, 3688, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.