×

zbMATH — the first resource for mathematics

Mirror symmetry for hypersurfaces in weighted projective space and topological couplings. (English) Zbl 0990.32500
Summary: By means of toric geometry we study hypersurfaces in weighted projective space of dimension four. In particular we compute for a given manifold its intrinsic topological coupling. We find that the result agrees with the calculation of the corresponding coupling on the mirror model in the large-complex-structure limit.

MSC:
32G20 Period matrices, variation of Hodge structure; degenerations
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32G81 Applications of deformations of analytic structures to the sciences
32J81 Applications of compact analytic spaces to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Greene, B.R.; Plesser, R., An introduction to mirror manifolds, (), and references therein · Zbl 0904.32025
[2] Dixon, L., Superstrings, unified theories and cosmology 1987, (), 67-127, For a review and references, see
[3] Kreuzer, M.; Skarke, H., Commun. math. phys., 150, 137, (1992)
[4] A. Klemm and R. Schimmrigk, Landau-Ginzburg string vacua, CERN preprint CERN-TH-6459/92
[5] M. Kreuzer and H. Skarke, All abelian symmetries of Landau-Ginzburg potentials, CERN on CERN-TH-6705/92 · Zbl 0990.81635
[6] Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L., Nucl. phys., B359, 21, (1991)
[7] Morrison, D.R.; Font, A.; Klemm, A.; Theisen, S.; Libgober, A.; Teitelbaum, J., Lines on Calabi-Yau complete intersections, mirror symmetry and Picard-Fuchs equations, (), Nucl. phys., Nucl. phys., University of illinois report, B389, 153, (1992), Munich University preprint LMU-TPW-93-08
[8] P. Candelas, X. de la Ossa, A. Font, S. Katz and D.R. Morrison, Mirror symmetry for two parameter models - I, CERN-TH-6884/93, UTTG-15-93, NEIP-93-005, OSU-M-93-1 · Zbl 0917.14023
[9] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, preprint HUTMP-93/0801 · Zbl 0814.53056
[10] Hübsch, T.; Yau, S.-T., Mod. phys. lett., A7, 3277, (1992)
[11] Batyrev, V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, (November 1992), preprint
[12] Griffiths, P.A., Ann. math. (NY), 2, 90, (1969)
[13] Ferrara, S., Mod. phys. lett., A6, 2175, (1991), and references therein
[14] Dixon, L.; Kaplunovsky, V.; Louis, J., Nucl. phys., B329, 27, (1990)
[15] V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, preprint · Zbl 0843.14016
[16] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R., Phys. lett., B303, 249, (1993)
[17] Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string thoery, Institute for Advanced Study report IASSNS-HEP-93/38
[18] Berglund, P.; Hübsch, T.; Berglund, P.; Hübsch, T., Nucl. phys., Proc., MSRI, Berkeley, Mirror symmetry workshop, B393, 377, (May 1991), also in
[19] Bryant, R.; Griffiths, P., (), 77
[20] Candelas, P.; Hübsch, T.; Green, P., Nucl. phys., B330, 49, (1990)
[21] Candelas, P.; de la Ossa, X., Nucl. phys., B355, 455, (1991)
[22] Griffiths, P.A., Bull. amer. math. soc., 76, 228, (1970)
[23] Cadavid, A.C.; Ferrara, S., Phys. lett., B267, 193, (1991)
[24] Lerche, W.; Smit, D.J.; Warner, N.P., Nucl. phys., B372, 87, (1992)
[25] Ceresole, A.; D’Auria, R.; Ferrara, S.; Lerche, W.; Louis, J., Intern. J. mod. phys., A8, 79, (1993)
[26] P. Berglund, P. Candelas, X. de la Ossa, A. Font, T. Hübsch, D. Jančić and F. Quevedo, Periods for Calabi-Yau and Landau-Ginzburg vacua, CERN-TH-6865/93, HUPAPP-93/3, NEIP 93-004, NSF-ITP-93-96, UTTG-13-93
[27] P.S. Aspinwall, B.R. Greene and D.R. Morrison, The monomial-divisor mirror map, preprint IASSNS-HEP-93/43
[28] Fulton, W., Introduction to toric varieties, () · Zbl 1083.14065
[29] P. Candelas, X. de la Ossa and S. Katz, Mirror symmetry for Calabi-Yau hypersurfaces in weighted \(P\)^4 and an extension of Landau-Ginzburg theory, in preparation · Zbl 0896.14023
[30] Batyrev, V.V., Duke math. J., 69, 349, (1993)
[31] P. Berglund and S. Katz, in preparation
[32] Oda, T.; Park, H.S., Tôhoku math. J., 43, 2, 375, (1991)
[33] Lerche, W.; Vafa, C.; Warner, N.; Candelas, P., Nucl. phys., Nucl. phys., B298, 458, (1988)
[34] Vafa, C., Mod. phys. lett., A6, 337, (1991)
[35] Green, P.; Hübsch, T., Commun. math. phys., 113, 505, (1987)
[36] V. Batyrev, Quantum cohomology rings of toric manifolds, preprint · Zbl 0806.14041
[37] Dolgachev, I., Weighted projective varieties, (), 34-71, Proceedings, Vancouver, 1981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.