zbMATH — the first resource for mathematics

Numerical investigation of two-dimensional turbulent boundary-layer compressible flow with adverse pressure gradient and heat and mass transfer. (English) Zbl 0987.76037
From the summary: We study numerically the effect of heat and mass transfer on steady turbulent compressible boundary-layer flow with adverse pressure gradient. The Reynolds-averaged boundary-layer equations and their boundary conditions are transformed in a suitable form for numerical solution by using the compressible version of Falkner-Skan transformation, and the resulting coupled and nonlinear system of partial differential equations is solved using a modified Keller’s box method. Numerical calculations are carried out for the case of air, at free stream temperature of \(300^\circ\text{K}\), and for a linearly retarded flow, known as Howarth’s flow, when the porous limiting surface is adiabatic, heated or cooled.

76F40 Turbulent boundary layers
76M20 Finite difference methods applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] Schlichting, H.: Boundary-layer theory, trans. by Kestin J. 7th ed. New York: McGraw-Hill, 1979, p. 635. · Zbl 0434.76027
[2] Gad-el-Hak, M., Bushnell, D. M.: Separation control: review. J. Fluid Eng., Transactions of the ASME113, 5–29 (1991).
[3] Bushnell, D. M.: Longitudinal vortex control-techniques and applications. The 32nd Lanchester Lecture, Aeronautical Quartely, pp. 293–312, October 1992.
[4] Gad-el-Hak, M., Bushnell, D. M.: Status and outlook of flow separation control, AIAA Paper 91-0037 (1991).
[5] Kline, S. J., Robinson, S. K.: Turbulent boundary-layer structure: progress, status and challenges, in: Structure of Turbulence and Drag Reduction (Gyr, A., ed.). IUTAM Symposium Zürich, Springer, pp. 3–22, 1990.
[6] Robinson, S. K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech.23, 603–639 (1991).
[7] Blackwelder, R. F.: The eddy structures in bounded shear flows. In: Special course on skin friction drag reduction (Cousteix, J., ed.). AGARD Report 786, Paper 6, 1992.
[8] Kim, J. J.: Study of turbulence structure through numerical simulations: the perspective of drag and reduction. In: Special course on skin friction drag reduction (Cousteix, J., ed.). AGARD Report 786, Paper 7, 1992.
[9] Arnal, D.: Control of laminar-turbulent transition for skin friction drag reduction. In: Control of flow instabilities and unsteady flows (Meier, G. and Schnerr, G., eds.) pp. 119–153, CISM Courses and Lectures No. 369, Udine, 1995. Springer: Wien New York, 1996. · Zbl 0885.76025
[10] Gad-el-Hak, M.: Flow control by suction. In: Structure of turbulence and drag reduction (Gyr, A., ed.) IUTAM Symposium Zürich, Switzerland, Springer, pp. 357–360, 1990.
[11] Sokolov, M., Antonia, R. A.: Response of a turbulent boundary layer to intensive suction through a porous strip. In: Proc. 9th symposium on turbulent shear flows. Kyoto Japan, Paper 5-3, 1993.
[12] Wilkinson, S. P., Anders, J. B., Lazos, B. S., Bushnell, D. M.: Turbulent drag reduction research of NASA Langlay: progress and plans. Int. J. Heat Fluid Flow9, 266–277 (1988).
[13] Gad-el-Hak, M., Blackwelder, R. F.: Selective suction of controlling bursting events in a boundary layer. AIAA Journal27 (3), 308–314 (1989).
[14] Myose, R. Y., Blackwelder, R. F.: Control of streamwise vortices using selective suction, AIAA Journal33 (6), 1076–1080 (1995).
[15] Reynolds, W. S., Saric, W. S.: Experiments on the stability of the flat plate boundary layer with suction, AIAA Paper 82-1026, 1982.
[16] Casalis, G., Copie, M. L., Airiau, Ch., Arnal, D.: Nonlinear analysis with PSE approach. In: IUTAM Symposium on nonlinear instability and transition in three-dimensional boundary layers. (Duck, P. W. and Hall, P., eds.), pp. 217–254. IUTAM Symposium, Manchester, UK 17–20 July 1995. Kluwer Academic Publishers: Dordrecht, 1996.
[17] Hefner, J. N., Bushnell, D. M.: Surface drag reduction via surface mass injection. In: Viscous drag reduction in boundary layers. Progress in Astronautics and Aeronautics123, AIAA Washington, D. C., pp. 457–476, 1990.
[18] Cummings, R. M., Schiff, L. B., Duino, J. D.: Experimental investigation of tangential slot blowing on a generic chined forebody. Journal of Aircraft32 (4), 812–824 (1995).
[19] Sumitani, Y., Kasagi, N.: Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal33 (7), 1220–1228 (1995).
[20] Spalart, P. R., Moser, R. D., Rogers, M. M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comp. Phys.96, 297–324 (1991). · Zbl 0726.76074
[21] Spalart, P. R., Watmuff, J. H.: Experimental and numerical investigation of a turbulent boundary layer with pressure gradients. J. Fluid Mech.249, 337–371 (1993).
[22] Marusic, I., Perry, A. E.: A wall-wake model for the turbulence structure of boundary layers, Part 2. Further experimental support. J. Fluid Mech.298, 389–407 (1995).
[23] Spalart, P. R., Coleman, G. N.: Numerical study of a separation bubble with heat transfer. Europ. J. Mech.B 16, 169–189 (1997). · Zbl 0875.76424
[24] Cebeci, T., Bradshaw, P.: Physical and computational aspects of convective heat transfer. 1st ed. New York: Springer, 1984, p. 52. · Zbl 0545.76090
[25] Cebeci, T., Smith, A. M. O.: Analysis of turbulent boundary layers. New York: Academic Press, 1974. · Zbl 0342.76014
[26] Minkowycz, W. J., Sparrow, E. M., Schneider, G. E., Pletcher, R. H.: Handbook of numerical heat transfer. 1st ed. New York: Wiley, 1988, p. 120.
[27] Cebeci, T.: A model for eddy conductivity and turbulent Prandtl number. ASME Journal of Heat Transfer95, 227–234 (1973).
[28] Chen, C. J., Chiou, J. S.: Laminar and turbulent heat transfer in the pipe entrance region for liquid metals. Int. J. Heat Mass Transfer24, 1179–1189 (1981).
[29] Jischa, M., Rieke, H. B.: About the prediction of turbulent Prandtl and Schmidt number. Int. J. Heat Mass Transfer22, 1547–1555 (1979). · Zbl 0414.76040
[30] Kays, W. M., Crawford, M. E.: Convective Heat and Mass Transfer. 3rd edn. New York: McGraw-Hill, 1993.
[31] Weigand, B., Ferguson, J. R., Crawford, M. E.: An extended Kays and Crawford turbulent Prandtl number model. Int. J. Heat Mass. Transfer40, (17) 4191–4196 (1997).
[32] Schreier, S.: Compressible flow. New York: Wiley 1982. · Zbl 0592.76004
[33] Keller, H. B.: A new difference scheme for parabolic problems. Numerical solutions of partial differential equations, II. (Bramble, J., ed.): New York: Academic Press, 1970.
[34] Rees, D. A. S.: Three-dimensional free convection boundary layers in porous media induced by a heated surface with spanwise temperature variations. Transactions ASME, J. Heat Transfer119, 792–798 (1997).
[35] Rees, D. A. S.: Free convective boundary-layer flow from a heated surface in a layered porous medium. Journal of Porius Media (to appear) (1999). · Zbl 0944.76086
[36] Ling, J. X., Dybbs, A.: Forced convection over a flat plate submersed in a porous medium: variable viscosity case, Paper 87-WA/HT-23, New York, ASME 1987.
[37] CRC Handbook of Chemistry and Physics (67th ed.), CRS Press, Boca Raton, FL, 1986–1987.
[38] Meier, G. E. A., Schnerr, G. H.: Control of flow instabilities and unsteady flows. CISM Courses and Lectures, No. 369, 1996. · Zbl 0854.00012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.