×

Turning points for adiabatically perturbed periodic equations. (English) Zbl 0987.35013

This work consists of two parts. Part I is devoted to the formal solutions of the general equation \[ i\varepsilon {dy\over dt}=A(t)y,\;t\in\Delta =[\alpha,\beta], \tag{1} \] where \(A(t)\) is a differential operator defined on a space \(X\) of \(a\)-periodic \((a>0)\) functions of \(x\); \(\varepsilon >0\), \(\varepsilon \to 0\). There are introduced some suitable general assumptions on the structure of the spectrum of \(A(t)\); it is defined the turning point as a point with a certain spectral property. Under these assumptions some properties of formal asymptotic solutions are studied.
In Part 2 the authors discuss the special features of the formal solutions of the equation (1) corresponding to the equation \[ -\psi_{xx}+ p(x)\psi+ v(\varepsilon x)=0, \tag{2} \] where \(p\) and \(v\) are smooth real functions; \(p\) is also \(a\)-periodic. The existence of exact solutions of (2) whose asymptotic behavior is given by the constructed formal solutions, is proved.

MSC:

35B10 Periodic solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1992. · Zbl 0171.38503
[2] V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York-Berlin, 1988.
[3] J. E. Avron, R. Seiler and L. G. Jaffe,Adiabatic theorems and applications to the quantum Hall effect, Comm. Math. Phys.110 (1987), 33–49. · Zbl 0626.58033
[4] V. S. Buldyrev and S. Yu. Slavjanov,Uniform asymptotic expansions for solutions of an equation of Schrödinger type with two transition points. I (in Russian), Vestnik Leningrad. Univ.23 (1968), no. 22, 70–84.
[5] V. S. Buldyrev and S. Yu. Slavjanov,Regularization of the phase integrals near the barrier top (in Russian), Problemi Matemat. Fiziki, Leningrad Univ. No. 10 (M. Sh. Birman, ed.) (1982), 50–70. · Zbl 0513.70016
[6] V. S. Buslaev,Adiabatic perturbation of a periodic potential (in Russian), Teoret. Mat. Fiz.58 (1984), no. 2, 233–243. · Zbl 0534.34064
[7] V. S. Buslaev,Quasiclassical approximation for equations with periodic coefficients (in Russian) Uspekhi Mat. Nauk42 (1987), no. 6 (258), 77–98.
[8] V. S. Buslaev,On spectral properties of adiabatically perturbed Schrödinger operators with periodic potential, Séminaire EDP, Ecole Polytechnique, 1990–91, no. 23.
[9] V. S. Buslaev and L. A. Dmitrieva,Adiabatic perturbation of a periodic potential. II (in Russian), Teoret. Mat. Fiz.73 (1987), no. 3, 430–442. · Zbl 0643.34068
[10] V. S. Buslaev and L. A. Dmitrieva,A Bloch electron in an external field, Algebra i Analiz.1, No. 2 (1989), 1–29; translated in Leningrad Math. J.1 (1990), 287–320. · Zbl 0714.34128
[11] V. S. Buslaev and A. Grigis,Imaginary parts of Stark-Wannier resonances, J. Math. Phys.39, No. 5 (1998), 2520–2550. · Zbl 1001.34075
[12] T. M. Cherry,Uniform asymptotic formulae for functions with transition points, Trans. Amer. Math. Soc.68 (1950), 224–257. · Zbl 0036.06102
[13] Y. Colin de Verdière, M. Lombardi and J. Pollet,The microlocal Landau-Zener formula, Ann. Inst. H. Poincaré Phys. Théor.71 (1999), 95–127. · Zbl 0986.81027
[14] Yu. Daleckii and M. G. Krein,Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc. Transl. Math. Monographs43 (1974).
[15] M. V. Fedoryuk,Asymptotic Analysis. Linear Ordinary Differential Equations, Springer-Verlag, Berlin, 1993. · Zbl 0782.34001
[16] A. Grigis,Points tournants et résonances de Stark-Wannier, Séminaire EDP, Ecole Polytechnique, 1997–98, no. 11.
[17] J.-C. Guillot, J. Ralston and E. Trubowitz,Semiclassical methods in solide State Physics, Comm. Math. Phys.116 (1988), 401–405. · Zbl 0672.35014
[18] G. A. Hagedron,Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps, Comm. Math. Phys.136 (1991), 433–449. · Zbl 0723.35068
[19] G. A. Hagedorn,Molecular propagation through electron energy level crossings, Mem. Amer. Math. Soc.111 (1994), no. 536. 0 · Zbl 0833.92025
[20] B. Helffer,Formes normales pour des opérateurs pseudodifferentiels semiclassiques en dimension 1, Séminaire EDP, Ecole Polytechnique, 1988–89, no. 2.
[21] B. Helffer and J. Sjöstrand,Semiclassical analysis for Harper’s equation III. Cantor structure of the spectrum, Mém. Soc. Math. France, No. 39, Suppl. au Bull. Soc. Math. France117, No. 4 (1989), 1–124. · Zbl 0725.34099
[22] A. Joye,Proof of the Landau-Zener formula, Asymptotic Anal.9 (1994), 209–258. · Zbl 0814.35109
[23] T. Kato,Perturbation Theory, Springer-Verlag, New York, 1966. · Zbl 0148.12601
[24] L. Landau,Collected Papers of L. Landau, Pergamon Press, Oxford, 1965.
[25] V. A. Marchenko and I. V. Ostrovskii,Characteristics of the spectrum of the Hill operator, Mat. Sb.97, No. 4 (1975), 540–606. · Zbl 0327.34021
[26] A. Martinez and G. Nenciu,On adiabatic reduction theory, Oper. Theory Adv. Appl.78 (1995), 243–252. · Zbl 0897.47036
[27] V. P. Maslov and M. V. Fedoriuk,Semiclassical Approximation in Quantum Mechanics, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981.
[28] E. C. Titchmarsh,Eigenfunction Expansions Associated with Second-order Differential Equations, Clarendon Press, Oxford, 1962. · Zbl 0099.05201
[29] W. Wasow,Linear Turning Point Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1985. · Zbl 0558.34049
[30] I. N. Yakushina,Uniform asymptotic expansions for the solutions of second-order differential equations with two turning points and a spectral parameter (in Russian), Differentsial’nye Uravneniya23 (1987), no. 6, 1014–1020. · Zbl 0668.34057
[31] C. Zener,Non-adiabatic crossing of energy levels, Proc. Roy. Soc. London137 (1932), 696–702. · Zbl 0005.18605
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.