zbMATH — the first resource for mathematics

A Grushko theorem for 1-acylindrical splittings. (English) Zbl 0987.20010
Let \(G=A*_CB\) be the free product with amalgamated subgroup \(C\). Assume that \(C\) is malnormal, that is, \(gCg^{-1}\cap C=\{1\}\) for all \(g\in G\setminus C\). It is known that the formula \[ \text{rank }G\geq\text{rank }A+\text{rank }B-\text{rank }C \] fails in general.
For instance, if \(G\) is given with \(A=\langle s_1,s_2,s_3\mid s^2_1=s^2_2=s^2_3=1\rangle\), \(B=\langle s_4,s_5,s_6\mid s^2_4=s^2_5=s^2_6=1\rangle\) and \(C=\langle s_1s_2s_3\rangle=\langle(s_4s_5s_6)^{-1}\rangle\cong\mathbb{Z}\) then \(C\) is malnormal, \(\text{rank }A=\text{rank }B=3\) and \(\text{rank }C=1\) but \(\text{rank }G=4\).
Here, the author shows the remarkable fact that \[ \text{rank }G\geq\tfrac 13(\text{rank }A+\text{rank }B-2\text{rank }C+5). \]

20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20E34 General structure theorems for groups
20F05 Generators, relations, and presentations of groups
Full Text: DOI
[1] Bestvina M., Publ. Math. Sci. Res. Inst. 19 pp 133– (1991)
[2] Dunwoody M. J., Lond. Math. Soc. Lect. Note Ser. 181 pp 75– (1993)
[3] Karrass A., Can. J. Math. 23 pp 933– (1971)
[4] R. Kaufmann and H. Zieschang, On the rank of NEC groups, in: Discrete Groups and Geometry, LMS Lect. Note Ser. 173, Cambridge University Press (1992), 137-147. · Zbl 0791.20033
[5] Lyndon R. C., Ergeb. Math. Grenzgeb. pp 89– (1977)
[6] G. Rosenberger, Zum Rang- undIsomorphieproblem fuEr freie Produkte mit Amalgam, Habilitationsschrift, 1974.
[7] Z. Sela, Acylindrical accessibility for groups, Invent. math. 129 (1997), 527-565. · Zbl 0887.20017
[8] Math. Ann. 312 pp 761– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.