×

zbMATH — the first resource for mathematics

The numerical simulation of strongly unsteady flow with hundreds of moving bodies. (English) Zbl 0986.76043
Summary: We develop a methodology for the simulation of strongly unsteady flows with hundreds of moving bodies. An unstructured grid, high-order, monotonicity preserving, ALE solver with automatic refinement and remeshing capabilities was enhanced by adding equations of state for high explosives, deactivation techniques and optimal data structures to minimize CPU overheads, automatic recovery of CAD data from discrete data, two new remeshing options, and a number of visualization tools for the preprocessing phase of large runs. The combination of these improvements has enabled the simulation of strongly unsteady flows with hundreds of moving bodies. Several examples demonstrate the effectiveness of the proposed methodology.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] and , ’Numerical simulation of shock interaction with a modern main battlefield tank’, AIAA 91-1666, 1991.
[2] and , ’Numerical simulation of a blast inside a Boeing 747’, AIAA 93-3091, 1993.
[3] and , ’Numerical simulation of blast in the World Trade Center’, AIAA 95-0085, 1995.
[4] , , , and , ’A coupled fluid/structure modeling of shock interaction with a truck’, AIAA 96-0795, 1996.
[5] and , ’Fluid-structure coupling: extensions and improvements’, AIAA 97-0858, 1997.
[6] Cebral, AIAA J. 35 pp 687– (1997) · Zbl 0895.73077 · doi:10.2514/2.158
[7] and , ’The numerical simulation of strongly unsteady flows with hundreds of moving bodies’, AIAA 98-0788, 1998.
[8] Löhner, Int. J. Numer. Methods Fluids 7 pp 1093– (1987) · Zbl 0633.76070 · doi:10.1002/fld.1650071007
[9] Luo, AIAA J. 32 pp 1183– (1994) · Zbl 0810.76037 · doi:10.2514/3.12118
[10] Löhner, Int. J. Numer. Methods Fluids 14 pp 1407– (1992) · Zbl 0753.76099 · doi:10.1002/fld.1650141204
[11] Löhner, Comput. Syst. Eng. 1 pp 257– (1990) · doi:10.1016/0956-0521(90)90012-A
[12] Löhner, Int. J. Numer. Methods Fluids 8 pp 1135– (1988) · Zbl 0668.76035 · doi:10.1002/fld.1650081003
[13] Shostko, Int. J. Numer. Methods Eng. 38 pp 905– (1995) · Zbl 0822.65097 · doi:10.1002/nme.1620380603
[14] Löhner, J. Comput. Phys. 126 pp 1– (1996) · Zbl 0862.65010 · doi:10.1006/jcph.1996.0115
[15] Löhner, Eng. Comput. 12 pp 186– (1996) · Zbl 05474592 · doi:10.1007/BF01198734
[16] , , , , and , ’Fluid-structure interaction using a loose coupling algorithm and adaptive unstructured grids’, AIAA 95-2259, 1995.
[17] Benson, Comput. Methods Appl. Mech. Eng. 78 pp 141– (1990) · Zbl 0708.73079 · doi:10.1016/0045-7825(90)90098-7
[18] Belytschko, Int. J. Numer. Methods Eng. 31 pp 547– (1991) · Zbl 0825.73984 · doi:10.1002/nme.1620310309
[19] , and , ’A general purpose contact detection algorithm for non-linear structural analysis codes’, SAND92-2141, Sandia National Laboratories, May, 1993.
[20] Malone, Int. J. Numer. Methods Eng. 37 pp 559– (1994) · Zbl 0789.73073 · doi:10.1002/nme.1620370403
[21] and , ’Adaptive finite element procedure for non-linear structural analysis’, ASME/JSME Pressure Vessels and Piping Conference, Honolulu, HI, July, 1990.
[22] and , ’An adaptive finite element procedure for structural analysis of solids’, ASME Pressure Vessels and Piping Conference, Orlando, FL, July, 1997.
[23] and , ’A general formulation of a contact algorithm with node/face and edge/edge contacts’, ASME Pressure Vessels and Piping Conference, San Diego, CA, July, 1998.
[24] and (eds.), Proceedings of the 1st AFOSR Conference on Dynamic Motion CFD, Rutgers University, New Brunswick, NJ, June, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.