zbMATH — the first resource for mathematics

Extending mirror conjecture to Calabi-Yau with bundles. (English) Zbl 0986.14500
The author extends the usual understanding of mirror symmetry to the case of Calabi-Yau base manifolds with a stable bundle as additional data. The corresponding mirror objects are supersymmetric cycles on the mirror manifold. For a Calabi-Yau \(n\)-fold \(N\) copies of \(D\)-branes wrapped over it will yield a \(U(N)\)-bundle which will be stable by the required supersymmetry. The motivation originates from type II string theory. It should be expected that the deformation of the bundle corresponds to the deformation of the supersymmetric cycle inside the mirror. This relation is studied for Calabi-Yau threefolds (e.g. for Chern-Simons theory) in more detail.

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J81 Relationships with physics
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14J30 \(3\)-folds
Full Text: DOI
[1] DOI: 10.1016/0550-3213(89)90474-4 · doi:10.1016/0550-3213(89)90474-4
[2] DOI: 10.1016/0550-3213(90)90622-K · doi:10.1016/0550-3213(90)90622-K
[3] DOI: 10.1016/0550-3213(91)90292-6 · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[4] Batyrev V., J. Alg. Geom. 3 pp 493– (1994)
[5] DOI: 10.1016/0550-3213(96)00434-8 · Zbl 0896.14024 · doi:10.1016/0550-3213(96)00434-8
[6] DOI: 10.1007/BF02099774 · Zbl 0815.53082 · doi:10.1007/BF02099774
[7] DOI: 10.1103/PhysRevLett.75.4724 · Zbl 1020.81797 · doi:10.1103/PhysRevLett.75.4724
[8] DOI: 10.1016/0550-3213(95)00130-K · doi:10.1016/0550-3213(95)00130-K
[9] DOI: 10.1016/0550-3213(96)00379-3 · Zbl 0925.14008 · doi:10.1016/0550-3213(96)00379-3
[10] DOI: 10.1007/s002200050154 · Zbl 0919.14010 · doi:10.1007/s002200050154
[11] DOI: 10.1016/S0550-3213(97)00393-3 · Zbl 0925.14019 · doi:10.1016/S0550-3213(97)00393-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.