×

zbMATH — the first resource for mathematics

The structure of GUT breaking by orbifolding. (English) Zbl 0985.81132
Summary: Recently, an attractive model of GUT breaking has been proposed in which a 5-dimensional supersymmetric SU(5) gauge theory on an \(S^1/(\mathbb{Z}_2\times \mathbb{Z}_2')\) orbifold is broken down to the 4d MSSM by SU(5)-violating boundary conditions. Motivated by this construction and several related realistic models, we investigate the general structure of orbifolds in the effective field theory context, and of this orbifold symmetry breaking mechanism in particular. An analysis of the group theoretic structure of orbifold breaking is performed. This depends upon the existence of appropriate inner and outer automorphisms of the Lie algebra, and we show that a reduction of the rank of the GUT group is possible. Some aspects of larger GUT theories based on SO(10) and \(E_6\) are discussed. We explore the possibilities of defining the theory directly on a space with boundaries and breaking the gauge symmetry by more general consistently chosen boundary conditions for the fields. Furthermore, we derive the relation of orbifold breaking with the familiar mechanism of Wilson line breaking, finding a one-to-one correspondence, both conceptually and technically. Finally, we analyse the consistency of orbifold models in the effective field theory context, emphasizing the necessity for self-adjoint extensions of the Hamiltonian and other conserved operators, and especially the highly restrictive anomaly cancellation conditions that apply if the bulk theory lives in more than 5 dimensions.

MSC:
81V22 Unified quantum theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Georgi, Unified gauge theories, in: Proc. Theories and Experiments in High Energy Physics, Coral Gables, 1975, New York, 1975
[2] Pati, J.; Salam, A.; Pati, J.; Salam, A., Phys. rev. D, Phys. rev. D, 10, 275, (1974)
[3] Georgi, H.; Quinn, H.; Weinberg, S., Phys. rev. lett., 33, 451, (1974)
[4] Dimopoulos, S.; Raby, S.; Wilczek, F.; Dimopoulos, S.; Georgi, H., Phys. rev. D, Nucl. phys. B, 193, 150, (1981)
[5] Sakai, N.; Ibanez, L.E.; Ross, G.G.; Ibanez, L.E.; Ross, G.G.; Einhorn, M.B.; Jones, D.R.T.; Marciano, W.J.; Senjanovic, G.; Langacker, P.; Luo, M.-X.; Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Amaldi, U.; de Boer, W.; Furstenau, H., Z. phys. C, Phys. lett. B, Phys. lett. B, Nucl. phys. B, Phys. rev. D, Phys. rev. D, Phys. lett. B, Phys. lett. B, 260, 447, (1991)
[6] Kawamura, Y., Prog. theor. phys., 103, 613, (2000)
[7] Kawamura, Y.
[8] Kawamura, Y.
[9] Altarelli, G.; Feruglio, F.
[10] Hall, L.; Nomura, Y.
[11] Kawamoto, T.; Kawamura, Y.
[12] Hebecker, A.; March-Russell, J.
[13] Antoniadis, I.; Antoniadis, I.; Munoz, C.; Quiros, M.; Pomarol, A.; Quiros, M.; Barbieri, R.; Hall, L.; Nomura, Y.; Delgado, A.; Quiros, M.; Marti, D.; Pomarol, A., Phys. lett. B, Nucl. phys. B, Phys. lett. B, Phys. rev. D, 63, 105007, (2001)
[14] Barbieri, R.; Hall, L.; Nomura, Y.
[15] Dixon, L.; Harvey, J.A.; Vafa, C.; Witten, E.; Dixon, L.; Harvey, J.A.; Vafa, C.; Witten, E., Nucl. phys. B, Nucl. phys. B, 274, 285, (1986)
[16] Flachi, A.; Moss, I.G.; Toms, D.J.
[17] Arkani-Hamed, N.; Cohen, A.G.; Georgi, H.
[18] Bershadsky, M.; Johansen, A., Nucl. phys. B, 536, 141, (1998)
[19] Arkani-Hamed, N.; Dimopoulos, S.; March-Russell, J.
[20] Strassler, M.J.
[21] Fuchs, J., Affine Lie algebras and quantum groups, (1992), Cambridge Univ. Press, For a good presentation of topics in the theory of Lie and affine Lie algebras see, for example
[22] Ibanez, L.E.; Mas, J.; Nilles, H.; Quevedo, F.; Ibanez, L.E.; Nilles, H.; Quevedo, F., Nucl. phys. B, Phys. lett. B, 187, 25, (1987)
[23] Slansky, R., Phys. rep., 79, 1, (1981)
[24] Dienes, K.; March-Russell, J., Nucl. phys. B, 479, 113, (1996)
[25] Nomura, Y.; Smith, D.; Weiner, N.
[26] Hosotani, Y.; Hosotani, Y., Phys. lett. B, Ann. phys., 190, 233, (1989)
[27] Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E.; Witten, E., Nucl. phys. B, Nucl. phys. B, 258, 75, (1985)
[28] Green, M.B.; Schwarz, J.H.; Witten, E., Superstring theory, 2, (1987), Cambridge Univ. Press
[29] Davies, A.T.; McLachlan, A., Phys. lett. B, 200, 305, (1988)
[30] Bagger, J.A.; Feruglio, F.; Zwirner, F.
[31] Reed, M.; Simon, B.; Chou, A., Fourier analysis and self-adjointness, Trans. am. math. soc., 289, 1, (1985), Academic Press New York
[32] Alford, M.G.; March-Russell, J.; Wilczek, F.; de Sousa Gerbert, P., Nucl. phys. B, Phys. rev. D, 40, 1346, (1989)
[33] de Sousa Gerbert, P.; Jackiw, R., Commun. math. phys., 124, 229, (1989)
[34] Cohen, A.G.; Kaplan, D.B., Phys. lett. B, 470, 52, (1999)
[35] Adler, S.L.; Adler, S.L.; Bardeen, W.A.; Bell, J.S.; Jackiw, R., Phys. rev., Phys. rev., Nuovo cimento A, 60, 47, (1969)
[36] Alvarez-Gaume, L.; Witten, E.; Alvarez, O.; Singer, I.; Zumino, B.; Alvarez-Gaume, L.; Ginsparg, P.; Alvarez-Gaume, L.; Ginsparg, P.; Alvarez-Gaume, L.; Ginsparg, P., Nucl. phys. B, Comm. math. phys., Nucl. phys. B, Ann. phys., Ann. phys., 171, 233, (1985), Erratum
[37] Schellekens, A.N.; Warner, N.P., Nucl. phys. B, 287, 317, (1987)
[38] Green, M.B.; Schwarz, J.H., Phys. lett. B, 149, 117, (1984)
[39] Sagnotti, A., Phys. lett. B, 294, 196, (1992)
[40] Dobrescu, B.A.; Poppitz, E.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.