×

zbMATH — the first resource for mathematics

CFT’s from Calabi-Yau four-folds. (English) Zbl 0984.81143
Summary: We consider F/M/type IIA theory compactified to four, three, or two dimensions on a Calabi-Yau four-fold, and study the behavior near an isolated singularity in the presence of appropriate fluxes and branes. We analyze the vacuum and soliton structure of these models, and show that near an isolated singularity, one often generates massless chiral superfields and a superpotential, and in many instances in two or three dimensions one obtains nontrivial superconformal field theories. In the case of two dimensions, we identify some of these theories with certain Kazama-Suzuki coset models, such as the \(N=2\) minimal models.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Kazama, Y.; Suzuki, H., New \(N=2\) superconformal field theories and superstring compactification, Mod. phys. lett. A, Vol. 4, 325, (1989)
[2] Zamolodchikov, A.B., JETP lett., Vol. 46, 160, (1987)
[3] Vafa, C.; Warner, N.P., Catastrophes and the classification of conformal theories, Phys. lett. B, Vol. 218, 51, (1989)
[4] Martinec, E., Algebraic geometry and effective Lagrangians, Phys. lett. B, Vol. 217, 431, (1989)
[5] Witten, E., On flux quantization in M-theory and the effective action, J. geom. phys., Vol. 22, 1, (1997) · Zbl 0908.53065
[6] Sethi, S.; Vafa, C.; Witten, E., Constraints on low-dimensional string compactifications, Nucl. phys. B, Vol. 480, 213, (1996) · Zbl 0925.81209
[7] Greene, B.; Morrison, D.; Strominger, A., Black hole condensation and the unification of string vacua, Nucl. phys. B, Vol. 451, 109, (1995) · Zbl 0908.53041
[8] Becker, K.; Becker, M., M-theory on eight manifolds, Nucl. phys. B, Vol. 477, 155, (1996) · Zbl 0925.81190
[9] Tian, G.; Yau, S.-T., Complete Kähler manifolds with zero Ricci curvature II, Inv. math., Vol. 106, 27, (1991) · Zbl 0766.53053
[10] Candela, P.; de la Ossa, X.C., Moduli space of calabi – yau manifolds, Nucl. phys. B, Vol. 355, 455, (1991) · Zbl 0732.53056
[11] Lerche, W., Fayet – iliopoulos potentials from four-folds, Jhep, Vol. 9711, 004, (1997)
[12] Witten, E., Non-perturbative superpotentials in string theory, Nucl. phys. B, Vol. 474, 343, (1996) · Zbl 0925.32012
[13] Bagger, J.; Witten, E., Quantization of Newton’s constant in certain supergravity theories, Phys. lett. B, Vol. 115, 202, (1982)
[14] Polchinski, J.; Strominger, A., New vacua for type II string theory, Phys. lett. B, Vol. 388, 736, (1996)
[15] S. Gukov, to appear
[16] Kehagias, A., New type IIB vacua and their F-theory interpretation
[17] Klebanov, I.; Witten, E., Superconformal field theory on three-branes at a calabi – yau singularity, Nucl. phys. B, Vol. 536, 199, (1998)
[18] Morrison, D.; Plesser, R., Nonspherical horizons
[19] Sethi, S., A relation between \(N=8\) gauge theories in three dimensions, Jhep, Vol. 9811, 003, (1998)
[20] Becker, K.; Becker, M.; Strominger, A., Five-brane, membranes and nonperturbative string theory, Nucl. phys. B, Vol. 456, 130, (1995)
[21] Ooguri, H.; Vafa, C., Summing up D-instantons, Phys. rev. lett., Vol. 77, 3296, (1996) · Zbl 0944.81528
[22] Seiberg, N.; Shenker, S., Hypermultiplet moduli space and string compactification to three-dimensions, Phys. lett. B, Vol. 388, 521, (1996) · Zbl 1017.81510
[23] Cecotti, S.; Vafa, C., On classification of \(N=2\) supersymmetric theories, Commun. math. phys., Vol. 158, 569, (1993) · Zbl 0787.58049
[24] Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C., A new supersymmetric index, Nucl. phys., Vol. 386, 405, (1992)
[25] Aharony, O.; Hanany, A.; Intriligator, K.; Seiberg, N.; Strassler, M.J., Aspects of \(N=2\) supersymmetric gauge theories in three-dimensions, Nucl. phys. B, Vol. 499, 67, (1997) · Zbl 0934.81063
[26] Kutasov, D., A comment on duality in \(N=1\) supersymmetric non-abelian gauge theories, Phys. lett. B, Vol. 351, 230, (1995)
[27] Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C.; Warner, N., Self-dual strings and \(N=2\) supersymmetric field theory, Nucl. phys. B, Vol. 477, 746, (1996) · Zbl 0925.81196
[28] Fendley, P.; Mathur, S.D.; Vafa, C.; Warner, N.P., Integrable deformations and scattering matrices for the \(N=2\) supersymmetric discrete series, Phys. lett., Vol. 243, 257, (1990)
[29] Rabin, J.M., Phys. lett. B, Vol. 411, 274, (1997)
[30] Schulze, J.; Warner, N.P., BPS geodesics in \(N=2\) supersymmetric yang – mills theory, Nucl. phys. B, Vol. 498, 101, (1997) · Zbl 0979.81589
[31] A. Shapere, C.Vafa, work in progress
[32] Lerche, W.; Vafa, C.; Warner, N.P., Chiral rings in \(N=2\) superconformal theories, Nucl. phys. B, Vol. 324, 427, (1989)
[33] Intriligator, K., Fusion residues, Mod. phys. lett. A, Vol. 6, 3543, (1991) · Zbl 1020.81847
[34] Lerche, W.; Warner, N.P., Polytopes and solitons in integrable \(N=2\) supersymmetric landau – ginzburge theories, Nucl. phys. B, Vol. 358, 571, (1991)
[35] Kapustin, A.; Strassler, M., On mirror symmetry in three-dimensional abelian gauge theories, Jhep, Vol. 9904, 021, (1999)
[36] Candelas, P.; De la Ossa, X.C.; Green, P.S.; Parkes, L., A pair of calabi – yau manifolds as an exactly soluble superconformal theory, Nucl. phys. B, Vol. 359, 21, (1991) · Zbl 1098.32506
[37] Aspinwall, P.; Morrison, D., Topological field theory and rational curves, Commun. math. phys., Vol. 151, 245, (1993) · Zbl 0776.53043
[38] Argyres, P.C.; Douglas, M.R., New phenomena in \(SU(3)\) supersymmetric gauge theory, Nucl. phys. B, Vol. 448, 93, (1995) · Zbl 1009.81572
[39] Griffiths, P.; Harris, J., Principles of algebraic geometry, (1978), Wiley Interscience · Zbl 0408.14001
[40] Alvarez-Gaumé, L.; Witten, E., Nucl. phys. B, Vol. 234, 269, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.