# zbMATH — the first resource for mathematics

Long-time convergence of solutions to a phase-field system. (English) Zbl 0984.35026
The authors consider the Caginalp-Fix phase-field model, $\partial_t \chi -\Delta \chi + W'(\chi)= \lambda'(\chi)\theta, \qquad\partial_t (\theta + \lambda (\chi))-\Delta \theta =0.$ Here $$(t,x) \in \mathbb{R}^+ \times \Omega$$, where $$\Omega \in \mathbb{R}^3$$ is bounded, $$\chi$$ is the phase variable, and $$\theta$$ is the temperature. $$\lambda(\cdot)$$ is the latent heat, and $$W(\cdot)$$ is the two-well energy. Dirichlet conditions are assumed on both $$\chi$$ and $$\theta$$, though the results of the paper also apply to the more physically relevant case of Neumann boundary conditions on the phase variable $$\chi$$.
The main result of the paper (Theorem 2.1) concerns convergence of solutions to equilibria in the non-generic case when there is a continuum of such equilibria: For any classical solution $$\chi(t,x)$$, $$\theta(t,x)$$ of the phase-field model above, we have that as $$t \rightarrow \infty$$, $$\chi(t,x) \rightarrow \chi_\infty$$, $$\theta(t,x) \rightarrow 0$$ in $$C(\overline{\Omega})$$, where $$\chi_\infty$$ is an equilibrium solution.
The proof uses ideas of Simon which in turn utilize the work of Lojasiewicz on analytic functions of several complex variable. This allows the authors to derive bounds on the functional $$I(\chi)=1/2 \int_\Omega |\nabla \chi|^2 +2 \Gamma (\chi) dx$$, where $$\Gamma$$ is the primitive of a function obtained by suitably modifying $$W'(\cdot)$$. Hence follow bounds on $$\partial_t \chi$$ which make it possible to conclude convergence of a solution to a particular element in the set of equilibria.

##### MSC:
 35B40 Asymptotic behavior of solutions to PDEs 35Q80 Applications of PDE in areas other than physics (MSC2000) 35K65 Degenerate parabolic equations
Full Text:
##### References:
 [1] Aizicovici, NoDEA 3 pp 1– (1996) · Zbl 0844.35040 · doi:10.1007/BF01194214 [2] Aizicovici, Advances in Mathematical Sciences and Applications (2000) [3] Continuous and Discrete Dynamics Near Manifolds of Equilibria, Lecture Notes in Mathematics, vol. 1058, Springer: New York, 1984. · Zbl 0535.34002 · doi:10.1007/BFb0071569 [4] Brochet, Applicable Analysis 49 pp 197– (1993) · Zbl 0790.35052 · doi:10.1080/00036819108840173 [5] Caginalp, Archives in Rational Mechanics and Analysis 92 pp 205– (1986) · Zbl 0608.35080 · doi:10.1007/BF00254827 [6] Colli, Discrete Continuous Dynamical System 5 pp 375– (1999) · Zbl 0981.74012 · doi:10.3934/dcds.1999.5.375 [7] Colli, Journal of Integral Equations Applications 10 pp 169– (1998) · Zbl 0925.45006 · doi:10.1216/jiea/1181074220 [8] Elliott, International Series of Numerical Mathematics 95 pp 46– (1990) [9] Feireisl, Journal of Dynamics Differential Equations 12 pp 647– (2000) · Zbl 0977.35069 · doi:10.1023/A:1026467729263 [10] Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1983. · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0 [11] Grinfeld, Proceedings of Royal Society of Edinburgh 125A pp 351– (1995) · Zbl 0828.34007 · doi:10.1017/S0308210500028079 [12] Hoffmann, Communications of Partial Differential Equations 24 pp 1055– (1999) · Zbl 0936.35032 · doi:10.1080/03605309908821458 [13] Jendoubi, Journal of Differential Equations 144 pp 302– (1998) · Zbl 0912.35028 · doi:10.1006/jdeq.1997.3392 [14] Lojasiewicz, Colloques du CNRS, Les équations aux dérivées partielles 117 (1963) [15] Matano, Journal of Faculty of Science University of Tokyo, 1A 29 pp 401– (1982) [16] Polá?ik, Journal of Differential Equations 124 pp 472– (1996) · Zbl 0845.35054 · doi:10.1006/jdeq.1996.0020 [17] Simon, Annals Mathematica 118 pp 525– (1983) · Zbl 0549.35071 · doi:10.2307/2006981 [18] Nonlinear Functional Analysis and its Applications, vols. I-IV. Springer: New York, 1988. · doi:10.1007/978-1-4612-4566-7 [19] Zelenyak, Differentio Uravnenia 4 pp 34– (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.