A large \(N\) duality via a geometric transition. (English) Zbl 0983.81050

Summary: We propose a large \(N\) dual of \(4\)d, \(N=1\) supersymmetric, SU\((N)\) Yang-Mills with adjoint field \(\Phi\) and arbitrary superpotential \(W(\Phi)\). The field theory is geometrically engineered via D-branes partially wrapped over certain cycles of a non-trivial Calabi-Yau geometry. The large \(N\), or low-energy, dual arises from a geometric transition of the Calabi-Yau, where the branes have disappeared and have been replaced by suitable fluxes. This duality yields highly non-trivial exact results for the gauge theory. The predictions indeed agree with expected results in cases where it is possible to use standard techniques for analyzing the strongly coupled, supersymmetric gauge theories. Moreover, the proposed large \(N\) dual provides a simpler and more unified approach for obtaining exact results for this class of supersymmetric gauge theories.


81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv


[1] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence · Zbl 1026.81029
[2] Vafa, C., Superstrings and topological strings at large N · Zbl 1060.81594
[3] Atiyah, M.; Maldacena, J.; Vafa, C., An M-theory flop as a large N duality · Zbl 1061.81056
[4] Acharya, B.S., On realising N=1 super yang – mills in M theory · Zbl 1024.81041
[5] Kachru, S.; Katz, S.; Lawrence, A.; McGreevy, J., Open string instantons and superpotentials, Phys. rev. D, 62, 026001, (2000)
[6] Taylor, T.R.; Vafa, C., RR flux on calabi – yau and partial supersymmetry breaking, Phys. lett. B, 474, 130, (2000) · Zbl 0959.81105
[7] Mayr, P., On supersymmetry breaking in string theory and its realization in brane worlds, Nucl. phys. B, 593, 99, (2001) · Zbl 0971.81537
[8] Antoniadis, I.; Partouche, H.; Taylor, T.R.; Ferrara, S.; Girardello, L.; Porrati, M.; Partouche, H.; Pioline, B., Partial spontaneous breaking of global supersymmetry, Phys. lett. B, Phys. lett. B, Nucl. phys. proc. suppl. B, 56, 322, (1997) · Zbl 0925.81345
[9] Kutasov, D.; Kutasov, D.; Schwimmer, A.; Kutasov, D.; Schwimmer, A.; Seiberg, N., Chiral rings, singularity theory, and electric – magnetic duality, Phys. lett. B, Phys. lett. B, Nucl. phys. B, 459, 455, (1996) · Zbl 1003.81562
[10] Klebanov, I.R.; Strassler, M.J., Supergravity and a confining gauge theory: duality cascades and χSB-resolution of naked singularities, Jhep, 0008, 052, (2000) · Zbl 0986.83041
[11] Maldacena, J.M.; Nunez, C., Towards the large N limit of pure N=1 super-yang – mills, Phys. rev. lett., 86, 588, (2001)
[12] Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C.; Warner, N., Self-dual strings and N=2 supersymmetric field theory · Zbl 0925.81196
[13] Gukov, S.; Vafa, C.; Witten, E., CFTs from calabi – yau four-folds, Nucl. phys. B, 584, 69, (2000) · Zbl 0984.81143
[14] Shapere, A.; Vafa, C., BPS structure of argyres – douglas superconformal theories
[15] Veneziano, G.; Yankielowicz, S.; Taylor, T.R.; Veneziano, G.; Yankielowicz, S., Phys. lett. B, Nucl. phys. B, 218, 493, (1983)
[16] Strominger, A., Massless black holes conifolds in string theory, Nucl. phys. B, 451, 96, (1995) · Zbl 0925.83071
[17] Witten, E., Baryons and branes in anti-de-Sitter space, Jhep, 9807, 006, (1998)
[18] Gross, D.J.; Ooguri, H., Aspects of large N gauge theory dynamics as seen by string theory, Phys. rev. D, 58, 106002, (1998)
[19] Gubser, S.; Klebanov, I., Baryons and domain walls in an N=1 superconformal gauge theory, Phys. rev. D, 58, 125025, (1998)
[20] Aganagic, M.; Vafa, C., Mirror symmetry, D-branes and counting holomorphic discs
[21] Katz, S.; Morrison, D., Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. alg. geom., 1, 449-530, (1992) · Zbl 0788.14036
[22] Argyres, P.C.; Douglas, M.R.; Argyres, P.C.; Plesser, M.R.; Seiberg, N.; Witten, E., New N=2 superconformal field theories, Nucl. phys. B, Nucl. phys. B, 461, 71, (1996) · Zbl 1004.81557
[23] Intriligator, K.; Leigh, R.G.; Seiberg, N., Exact superpotentials in four dimensions, Phys. rev. D, 50, 1092, (1994)
[24] Seiberg, N., Naturalness versus supersymmetric non-renormalization theorems, Phys. lett. B, 318, 469, (1993)
[25] Seiberg, N.; Witten, E., Monopole condensation and confinement in N=2 supersymmetric yang – mills theory, Nucl. phys. B, 426, 19, (1994) · Zbl 0996.81510
[26] Argyres, P.C.; Faraggi, A.E., The vacuum structure and spectrum of N=2 supersymmetric SU(N) gauge theory, Phys. rev. lett., 74, 3931, (1995)
[27] Klemm, A.; Lerche, W.; Theisen, S.; Yankielowicz, S., Simple singularities and N=2 supersymmetric yang – mills theory, Phys. lett. B, 344, 169, (1995)
[28] Intriligator, K., ‘integrating in’ and exact superpotentials in 4d, Phys. lett. B, 336, 409, (1994)
[29] Douglas, M.; Shenker, S., Dynamics of SU(N) supersymmetric gauge theory, Nucl. phys. B, 447, 271, (1995) · Zbl 1009.81571
[30] Elitzur, S.; Forge, A.; Giveon, A.; Intriligator, K.; Rabinovici, E., Massless monopoles via confining phase superpotentials, Phys. lett. B, 379, 121, (1996)
[31] de Boer, J.; Oz, Y., Monopole condensation and confining phase of N=1 gauge theories via M-theory fivebrane, Nucl. phys. B, 511, 155, (1998) · Zbl 0947.81110
[32] Gorsky, A.; Krichever, I.; Marshakov, A.; Mironov, A.; Morozov, A.; Martinec, E.; Warner, N.; Nakatsu, T.; Takasaki, K.; Edelstein, J.D.; Marino, M.; Mas, J., Whitham hierarchies, instanton corrections, and soft supersymmetry breaking in N=2 SU(N) super-yang – mills theory, Phys. lett. B, Nucl. phys. B, Mod. phys. lett. A, Nucl. phys. B, 541, 671, (1999)
[33] Witten, E.; Hori, K.; Ooguri, H.; Oz, Y.; Witten, E., Branes and the dynamics of QCD, Nucl. phys. B, Adv. theor. math. phys., Nucl. phys. B, 507, 658, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.