×

zbMATH — the first resource for mathematics

String-string duality conjecture in six dimensions and charged solitonic strings. (English) Zbl 0982.81520
Summary: It has recently been conjectured that the type IIA string theory compactified on \(K3\) and the heterotic string theory compactified on a four dimensional torus describe identical string theories. The fundamental heterotic string can be regarded as a non-singular soliton solution of the type IIA string theory with a semi-infinite throat. We show that this solution admits 24 parameter non-singular deformation describing a fundamental heterotic string carrying electric charge and current. The charge is generated due to the coupling of the gauge fields to the anti-symmetric tensor field, and not to an explicit source term. This clarifies how soliton solutions carrying charge under the Ramond-Ramond fields can be constructed in the type IIA theory, and provides further support to the string-string duality conjecture. Similarly, the fundamental type IIA string can be regarded as a non-singular solution of the heterotic string theory with a semi-infinite throat, but this solution does not admit any deformation representing charged string. This is also consistent with the expectation that a fundamental type IIA string does not carry any charge that couples to the fields originating in the Ramond-Ramond sector.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32J81 Applications of compact analytic spaces to the sciences
14J81 Relationships between surfaces, higher-dimensional varieties, and physics
14J28 \(K3\) surfaces and Enriques surfaces
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J C. Hull and P Townsend, preprint QMW-94-30 (hep-th/9410167).
[2] C. Vafa, unpublished.
[3] M. Duff, preprint CTP-TAMU-49/94 (hep-th/9501030)
[4] E. Witten, preprint IASSNS-HEP-95-18 (hep-th/9503124).
[5] Seiberg, N., Nucl. phys. B, 303, 286, (1988)
[6] P. Aspinwall and D. Morrison, preprint DUK-TH-94-68 (hep-th/9404151).
[7] Montonen, C.; Olive, D.; Goddard, P.; Nyuts, J.; Olive, D.; Osborn, H., Phys. lett. B, Nucl. phys. B, Phys. lett. B, 83, 321, (1979)
[8] Font, A.; Ibanez, L.; Lust, D.; Quevedo, F.; Rey, S.J.; Kalara, S.; Nanopoulos, D., Phys. lett. B, Phys. rev. D, Phys. lett. B, 267, 343, (1991)
[9] Sen, A., Int. J. mod. phys. A, 9, 3707, (1994), and references therein
[10] J. Schwarz, preprint CALT-68-1965 (hep-th/9411178).
[11] Sen, A., Phys. lett. B, 329, 217, (1994), (hep-th/9402032)
[12] J. Gauntlett and J. Harvey, preprint EFI-94-36 (hep-th/94071I I).
[13] C. Vafa and E. Witten, preprint HUTP-94-AO17 (hep-th/9408074).
[14] G. Segal, to appear.
[15] L. Girardello, A. Giveon, M. Porrati and A. Zaffaroni, preprint NYU-TH-94/06/02 (hep-th/9406128); preprint NYU-TH-94/12/01 (hep-th/9502057).
[16] P. Townsend, preprint DAMTP-R/95/2 (hep-th/9501068).
[17] S. Gates and v. Rodgers, UMD EPP 95-76 (hep-th/9503237).
[18] I. Bars, preprint USC-95/HEP-82 (hep-th/9503228).
[19] Witten, E.; Olive, D., Phys. lett. B, 78, 97, (1978)
[20] Dabholkar, A.; Gibbons, G.; Harvey, J.; Ruiz, F., Nucl. phys. B, 340, 33, (1990)
[21] M. Duff, R. Khuri and J. Lu, preprint CTP/TAMU-67/92 (hep-th/9412184), and references therein.
[22] M. Duff, G. Gibbons and P Townsend, preprint DAMTP/R-93/5 (hep-th/9405124).
[23] Veneziano, G.; Meissner, K.; Veneziano, G.; Meissner, K.; Veneziano, G.; Sen, A.; Sen, A.; Gasperini, M.; Maharana, J.; Veneziano, G., Phys. lett. B, Phys. lett. B, Mod. phys. lett. A, Phys. lett. B, Phys. lett. B, Phys. lett. B, 272, 272, (1991)
[24] S. Hassan, preprint TIFR-TH-94-26 (hep-th/9408060).
[25] Sen, A., Nucl. phys. B, 388, 457, (1992)
[26] A. Sen, preprint TIFR-TH-94-47 (hep-th/9411187).
[27] Callan, C.; Harvey, J.; Strominger, A.; Callan, C.; Harvey, J.; Strominger, A., Nucl. phys. B, Nucl. phys. B, 367, 60, (1991)
[28] J. Harvey and A. Strominger, preprint EFI-95-16 (hep-th/9504047).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.