zbMATH — the first resource for mathematics

The effect of bond strength and loading rate on the conditions governing the attainment of intersonic crack growth along interfaces. (English) Zbl 0982.74059
From the summary: We analyze numerically the dynamic crack growth along a bimaterial interface under impact shear loading. The material on each side of the bond line is characterized by an isotropic hyperelastic constitutive relation. A cohesive surface constitutive relation is also specified that relates the tractions and displacement jumps across the bond line and that allows for the creation of new free surface. The resistance to crack intiation and the crack speed history are predicted without invoking any additional failure criterion. Full finite strain transient analyses are carried out. Calculations are carried out for parameters characterizing a steel-PMMA bimaterial.

74R15 High-velocity fracture
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Aleksandrov, V.M.; Smetanin, B.I., Supersonic cleavage of an elastic strip, Pmm ussr, 54, 677-682, (1990)
[2] Andrews, D.J., Rupture velocity of plane strain shear cracks, J. geophys. res., 81, 5679-5687, (1976)
[3] Andrews, D.J.; Ben-Zion, Y., Wrinkle-like slip pulse on a fault between different materials, J. geophys. res., 102, 553-571, (1997)
[4] Archuleta, R.J., Analysis of near-source static and dynamic measurements from the 1979 imperial valley earthquake, Bull. seismological soc. am., 72, 1927-1956, (1982)
[5] Belytschko, T.; Chiapetta, R.L.; Bartel, H.D., Efficient large scale non-linear transient analysis by finite elements, Int. J. numer. meth. engr., 10, 579-596, (1976)
[6] Boudet, J.F.; Ciliberto, S., Interaction of sound with fast crack propagation, Phys. rev. lett., 80, 341-344, (1998)
[7] Broberg, K.B., The propagation of a griffith crack, Ark. fys., 18, 159, (1960)
[8] Broberg, K.B., Irregularities at Earth-quake slip, J. tech. phys., 26, 275-284, (1985)
[9] Broberg, K.B., The near-tip field at high crack velocities, Int. J. fract., 39, 1-13, (1989)
[10] Burridge, R., Admissible speeds for plane-strain shear cracks with friction by lacking cohesion, Geophys. J. roy. soc. lond., 35, 439-455, (1973) · Zbl 0272.73022
[11] Burridge, R.; Conn, G.; Freund, L.B., The stability of a rapid mode II shear crack with finite cohesive traction, J. geophys. res., 85, 2210-2222, (1979)
[12] Bykovtsev, A.S.; Kramarovskii, D.B., Non-stationary supersonic motion of a complex discontinuity, Pmm ussr, 53, 779-786, (1989) · Zbl 0733.73059
[13] Curran, D.R.; Shockey, D.A.; Winkler, S., Crack propagation at supersonic velocities, II. theoretical model, Int. J. fract., 6, 271-278, (1970)
[14] Deng, X., General crack tip fields for stationary and steadily growing interface cracks in anisotropic bimaterials, J. appl. mech., 60, 183-189, (1993) · Zbl 0777.73050
[15] Freund, L.B., The mechanics of dynamic shear crack propagation, J. geophys. res., 84, 2199-2209, (1979)
[16] Freund, L.B., Dynamic fracture mechanics, (1990), Cambridge University Press Cambridge · Zbl 0712.73072
[17] Georgiadis, H.G., On the stress singularity in transonic shear crack propagation, Int. J. fract., 30, 175-180, (1986)
[18] Heaton, T.H., Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth. planet. inter., 64, 1-20, (1990)
[19] Huang, Y.; Wang, W.; Liu, C.; Rosakis, A.J., Intersonic interfacial crack growth in a bimaterial: an investigation of crack face contact, J. mech. phys. solids, 46, 2233-2259, (1998) · Zbl 1056.74561
[20] Johnson, E., On the initiation of unidirectional slip, Geophys. J. int., 101, 125-132, (1990)
[21] Krieg, R.O.; Key, S.W., Transient shell response by numerical time integration, Int. J. numer. meths. engrg., 7, 273-286, (1973)
[22] Lambros, J.; Rosakis, A.J., Dynamic decohesion of bimaterials: experimental observations and failure criteria, Int. J. solids struct., 32, 2677-2702, (1995)
[23] Lambros, J.; Rosakis, A.J., On the development of a dynamic decohesion criterion for bimaterials, Proc. R. soc. lond., A451, 711-736, (1995)
[24] Lambros, J.; Rosakis, A.J., Shear dominated transonic interfacial crack growth in a bimaterial-I. experimental observations, J. mech. phys. solids, 43, 169-188, (1995) · Zbl 0900.73616
[25] Liu, C.; Huang, Y.; Rosakis, A.J., Shear dominated transonic interfacial crack growth in a bimaterial-II. asymptotic fields and favorable velocity regimes, J. mech. phys. solids, 43, 189-206, (1995) · Zbl 0900.73617
[26] Liu, C.; Lambros, J.; Rosakis, A., Highly transient elasto-dynamic crack growth in a bimaterial interface: higher order asymptotic analysis and optical experiment, J. mech. phys. solids, 41, 1887-1954, (1993) · Zbl 0803.73058
[27] Lo, C.Y.; Nakamura, T.; Kushner, A., Computational analysis of dynamic crack propagation along a bimaterial interface, Int. J. solids struct., 31, 145-168, (1994) · Zbl 0800.73332
[28] Marder, M.; Gross, S., Origin of crack tip instabilities, J. mech. phys. solids, 43, 1-48, (1995) · Zbl 0878.73053
[29] Morrisey, J.W.; Rice, J.R., Crack front waves, J. mech. phys. solids, 46, 467-488, (1998)
[30] Nakamura, T., Three dimensional stress fields of elastic interface cracks, J. appl. mech., 58, 939-946, (1991)
[31] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. appl. mech., 54, 525-531, (1987) · Zbl 0626.73010
[32] Rice, J.R., Elastic fracture mechanics concepts for interfacial cracks, J. appl. mech., 55, 98-103, (1988)
[33] Samundrala, O., Rosakis, A., 1998. Multiple crack face contact phenomena occurring during shear dominated intersonic and supersonic crack growth in bimaterials: Experiments and theory, in preparation
[34] Singh, R.P.; Shukla, A., Subsonic and intersonic crack growth along a bimaterial interface, J. appl. mech., 63, 919-924, (1996)
[35] Singh, R.P., Lambros, J., Shukla, A., Rosakis, A., 1997. Investigation of the mechanics of intersonic crack propagation along a bimaterial interface using coherent gradient sensing and photoelasticity, Proc. Roy. Soc. Lond. A453, 2649-2667.
[36] Tippur, H.V.; Rosakis, A.J., Quasi-static and dynamic crack growth along bimaterial interfaces: A note on crack-tip field measurements using coherent gradient sensing, Expt. mech., 31, 243-251, (1991)
[37] Washabaugh, P.G.; Knauss, W.G., A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids, Int. J. fract., 65, 97-114, (1994)
[38] Weertman, J., Unstable slippage across a fault that separates elastic media of different elastic constants, Geophys. J. int., 85, 1455-1461, (1980)
[39] Winkler, S.; Shockey, D.A.; Curran, D.R., Crack propagation at supersonic velocities, I, Int. J. fract., 6, 151-158, (1970)
[40] Xu, X-P.; Needleman, A., Void nucleation by inclusion debonding in a crystal matrix, Modell. simul. mat. sci. engin., 1, 111-132, (1993)
[41] Xu, X-P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. mech. phys. solids, 42, 1397-1434, (1994) · Zbl 0825.73579
[42] Xu, X-P.; Needleman, A., Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line, Int. J. fract., 74, 253-275, (1995)
[43] Xu, X-P.; Needleman, A., Numerical simulations of dynamic crack growth along an interface, Int. J. fract., 74, 289-324, (1996)
[44] Yang, W.; Suo, Z.; Shih, C.F., Mechanics of dynamic debonding, Proc. R. soc. lond., A433, 679-697, (1991) · Zbl 0726.73058
[45] Zheng, G., Rice, J.R. 1998 Conditions under which velocity-weakening friction allows a self-healing versus a crack-like mode of rupture, Bull. Seismological Soc. Am. 88, 1466-1483.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.