zbMATH — the first resource for mathematics

An implementation of the Bestvina-Handel algorithm for surface homeomorphisms. (English) Zbl 0982.57005
Summary: M. Bestvina and M. Handel [Topology 34, No. 1, 109-140 (1995; Zbl 0837.57010)] have introduced an effective algorithm that determines whether a given homeomorphism of an orientable, possibly punctured surface is pseudo-Anosov. We present a Java software package that realizes this algorithm for surfaces with one puncture. It allows the user to define homeomorphisms in terms of Dehn twists, and in the pseudo-Anosov case it generates images of train tracks in the sense of Bestvina-Handel.

57M60 Group actions on manifolds and cell complexes in low dimensions
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
57-04 Software, source code, etc. for problems pertaining to manifolds and cell complexes
Full Text: DOI EuDML arXiv
[1] Bestvina M., Ann. of Math. (2) 135 (1) pp 1– (1992) · Zbl 0757.57004 · doi:10.2307/2946562
[2] Bestvina M., Topology 34 (1) pp 109– (1995) · Zbl 0837.57010 · doi:10.1016/0040-9383(94)E0009-9
[3] Brinkmann P., Master’s thesis, in: Pseudo-Anosov automorphisms of free groups (1995)
[4] Brinkmann P., Ein algorithmischer Zugang zur Klassifikation von Flächenhomöomorphis men (1996)
[5] Colin de Verdière Y., Enseign. Math. (2) 37 (3) pp 201– (1991)
[6] Fathi A., Travaux de Thurston sur les surfaces (1979)
[7] Franks J., Nielsen theory and dynamical systems (South Hadley, MA, 1992) pp 69– (1993) · doi:10.1090/conm/152/01319
[8] Hall T., ”Train tracks of surface homeomorphisms” (1996)
[9] Lickorish W. B. R., Proc. Cambridge Philos. Soc. 60 pp 769– (1964) · doi:10.1017/S030500410003824X
[10] Los J. E., Proc. London Math. Soc. (3) 66 (2) pp 400– (1993) · Zbl 0788.58039 · doi:10.1112/plms/s3-66.2.400
[11] Lustig M., Automorphismen von freien Gruppen (1992)
[12] Menasco W., ”BH2.1: an implementation of the Bestvina–Handel algorithm” (1996)
[13] Stallings J. R., Invent. Math. 71 (3) pp 551– (1983) · Zbl 0521.20013 · doi:10.1007/BF02095993
[14] Thurston W. P., ”The geometry and topology of three-manifolds” (1979)
[15] White T., ”FOLDTOOL” (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.