×

zbMATH — the first resource for mathematics

Numerical treatment of polar coordinate singularities. (English) Zbl 0981.76075
The authors present a method for eliminating the coordinate singularities whereby singular coordinates are redefined so that data are smoothly differentiated through the pole. The method avoids to place a grid point directly at the pole, and consequently eliminates the need for any pole equation. It appears to be an effective and systematic way to treat many scalar and vector equations in cylindrical and spherical coordinates.

MSC:
76M99 Basic methods in fluid mechanics
76N99 Compressible fluids and gas dynamics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Akselvoll, K.; Moin, P., An efficient method for temporal integration of the navier – stokes equations in confined axisymmetric geometries, J. comput. phys., 125, 454, (1996) · Zbl 0847.76043
[2] Akselvoll, K.; Moin, P., An efficient method for temporal integration of the navier – stokes equations in confined axisymmetric geometries, J. comput. phys., 125, 454, (1996) · Zbl 0847.76043
[3] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1987) · Zbl 0636.76009
[4] Colonius, T., Numerically nonreflecting boundary and interface conditions, for compressible flow and aeroacoustic computations, Aiaa j., 35, 1126, (1997) · Zbl 0909.76058
[5] Colonius, T.; Lele, S.K.; Moin, P., Sound generation in a mixing layer, J. fluid mech., 330, 375, (1997) · Zbl 0901.76075
[6] Ferziger, J.H.; Peric, M., Computational methods for fluid dynamics, (1996) · Zbl 0869.76003
[7] Fornberg, B., A practical guide to pseudo-spectral methods, (1996)
[8] Freund, J.B.; Lele, S.K.; Moin, P., Direct simulation of a supersonic round turbulent shear layer, (1997)
[9] Giles, M., Non-reflecting boundary conditions for Euler equations, Aiaa j., 28, 2050, (1990)
[10] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods: theory and applications, (1977) · Zbl 0412.65058
[11] Griffin, M.D.; Jones, E.; Anderson, J.D., A computational fluid dynamic technique valid at the centerline for non-axisymmetric problems in cylindrical coordinates, J. comput. phys., 30, 352, (1979) · Zbl 0399.76063
[12] Huang, W.; Sloan, D.M., Pole condition for singular problems: the pseudo-spectral approximation, J. comput. phys., 107, 254, (1993) · Zbl 0785.65091
[13] Lele, S.K., Compact finite difference schemes with spectral-like resolution, J. comput. phys., 103, 16, (1992) · Zbl 0759.65006
[14] Lewis, H.R.; Bellan, P.M., Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates, J. math. phys., 31, 2592, (1990) · Zbl 0781.42005
[15] Mankbadi, R.R.; Hayer, M.E.; Povinelli, L.A., Structure of supersonic jet flow and its radiated sound, Aiaa j., 32, 897, (1994)
[16] Matsushima, T.; Marcus, P.S., A spectral method for polar coordinates, J. comput. phys., 120, 365, (1995) · Zbl 0842.65051
[17] Merilees, P.E., The pseudospectral approximation applied to the shallow water equations on a sphere, Atmosphere, 11, 13, (1973)
[18] Mitchell, B.E.; Lele, S.K.; Moin, P., Direct computation of the sound generated by subsonic and axisymmetric jets, (1995)
[19] Mitchell, B.E.; Lele, S.K.; Moin, P., Direct computation of the sound generated by an axisymmetric jet, Aiaa j., 35, 1574, (1997) · Zbl 0900.76221
[20] Mohseni, K., Investigations on coherent structures: A. universality in vortex formation; B. evaluation of noise generation mechanisms in fully expanded supersonic jets, (January 2000), California Institute of Technology Pasadena
[21] Morris, P.J.; Long, L.N.; Bangalore, A.; Wang, Q., A parallel three-dimensional computational aeroacoustic method using nonlinear disturbance equations, J. comput. phys., 133, 56, (1997) · Zbl 0883.76059
[22] Shih, S.H.; Hixon, R.; Mankbadi, R.R., Three dimensional structure in a supersonic jet: behavior near centerline, (1995) · Zbl 0970.76050
[23] Tam, C.K.W.; Webb, J.C., Dispersion relation preserving finite difference schemes for computational acoustics, J. comput. phys., 107, 262, (1993) · Zbl 0790.76057
[24] Trefethen, L.N., Group velocity in finite difference schemes, SIAM rev., 124, 113, (1982) · Zbl 0487.65055
[25] Verzicco, R.; Orlandi, P., A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates, J. comput. phys., 123, 402, (1996) · Zbl 0849.76055
[26] Vichnevetsky, R.; Bowles, J.B., Fourier analysis of numerical approximations of hyperbolic equations, (1982) · Zbl 0495.65041
[27] Wolfram, S., Mathematica, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.