×

zbMATH — the first resource for mathematics

Averaging technique for FE – a posteriori error control in elasticity. I: Conforming FEM. (English) Zbl 0981.74063
Summary: Averaging techniques are popular tools in adaptive finite element methods for the numerical treatment of second-order partial differential equations, since they provide efficient a posteriori error estimates by a simple postprocessing. In this paper, the reliability of any averaging estimator is shown for low order finite element methods in elasticity. Theoretical and numerical evidence supports that the reliability is tip to the smoothness of given right-hand sides, and is independent of the structure of shape-regular mesh.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
Software:
na14
PDF BibTeX Cite
Full Text: DOI
References:
[1] Alberty, J.; Carstensen, C.; Funken, S.A., Remarks around 50 lines of Matlab: short finite element implementation, Numer. alg., 20, 117-137, (1999) · Zbl 0938.65129
[2] Babuška, I.; Rheinboldt, W.C., Error estimates for adaptive finite element computations, SIAM J. numer. anal., 15, 736-754, (1978) · Zbl 0398.65069
[3] Babuška, I.; Stroubooulis, T.; Upadhyay, C.S.; Gangaraj, S.K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Int. J. numer. methods engrg., 37, 1073-1123, (1994) · Zbl 0811.65088
[4] Braess, D., Finite elements, (1997), Cambridge University Press Cambridge
[5] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 1994
[6] C. Carstensen, Quasi interpolation and a posteriori error analysis in finite element method. M2AN 33 (1999) 1187-1202 · Zbl 0948.65113
[7] C. Carstensen, S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructural grids Part I: Low order conforming, nonconfirming, and mixed FEM. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 99-11, Christian-Albrechts-Universität zu Kiel, Kiel (http://www.numerik.uni-kiel.de/reports/1999/99-11.html), 1999
[8] C. Carstensen, G. Dolzmann, S.A. Funken, D. Helm, Locking-free adaptive mixed finite element methods in elasticity, Berichtstreihe des Mathematischen Seminars Kiel, Technical report 98-19 Universität Kiel (http://www.numerick.uni-kiel.de/reports/1998/98-19.html). Comp. Methods Appl. Mech. Engrg. (accepted 06/99), 1998 · Zbl 1004.74068
[9] C. Carstensen, S.A. Funken: Constants in Clèment-interpolation error and residual based a posteriori error estimates in Finite Element Methods. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 97-11, Christian-Albrechts-Universität zu Kiel, Kiel. East-West Numer. Anal. (to appear). (http://www.numerik.uni-kiel.de/reports/1997/97-11.html), 1997
[10] C. Carstensen, S.A. Funken, Averaging technique for FE-a posteriori error control in elasticity. Part II: λ-independent estimates. Comput. Mech. Appl. Mech. Engrg., in press. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 00-6, Christian-Albrechts-Universität zu Kiel, Kiel (2000) (http://www.numerik.uni-kiel.de/reports/2000/00-6.html)
[11] C. Carstensen, R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 97-6, Christian-Albrechts-Universität zu Kiel, SIAM J. Numer. Anal. (1998) accepted for publication
[12] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[13] Duran, R.; Muschietti, M.A.; Rodriguez, R., On the asymptotic exactness of error estimators for linear triangular elements, Numer. math., 59, 107-127, (1991) · Zbl 0716.65098
[14] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta numerica, 105-158, (1995) · Zbl 0829.65122
[15] W. Hoffmann, A.H. Schatz, L.B. Whalbin, G. Wittum, Asymptotically exact a posteriori error estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes. Preprint 1999
[16] Rodriguez, R., Some remarks on Zienkiewicz-Zhu estimator, Int. J. numer. methods PDE, 10, 625-635, (1994) · Zbl 0806.73069
[17] R. Rodriguez, A posteriori error analysis in the finite element method, in: M. Krizek et al. (Ed.), Finite Element Methods. 50 yrs of the Courant Element, Conference held at the University of Jyvaeskylae, Finland, 1993, Marcel Dekker, New York, Lecture Notes on Pure Appl. Math., vol. 164, 1994, pp. 389-397
[18] Verfürth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, (1996), Wiley Amsterdam · Zbl 0853.65108
[19] Zeidler, E., Nonlinear functional analysis and its application IV, (1988), Springer New York
[20] Zienkiewicz, O.C.; Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. numer. methods engrg., 24, 337-357, (1987) · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.