×

zbMATH — the first resource for mathematics

Arbitrary discontinuities in finite elements. (English) Zbl 0981.74062
Summary: We present a technique for modelling arbitrary discontinuities in finite elements. Both discontinuities in the function and its derivatives are considered. Methods for intersecting and branching discontinuities are given. In all cases, the discontinuous approximation is constructed in terms of a signed distance functions, so level sets can be used to update the position of discontinuities. A standard displacement-based Galerkin method is used for developing discrete equations. Examples of the following applications are given: crack growth, a journal bearing, a non-bonded circular inclusion and a jointed rock mass.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74L10 Soil and rock mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[2] Moës, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[3] Daux, International Journal for Numerical Methods in Engineering 48 pp 1741– (2000) · Zbl 0989.74066 · doi:10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
[4] Sukumar, International Journal for Numerical Methods in Engineering 48 pp 1549– (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[5] Belytschko, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[6] Oliver, Computational Mechanics 17 pp 49– (1995) · doi:10.1007/BF00356478
[7] Oliver, International Journal for Numerical Methods in Engineering 39 pp 3601– (1996) · doi:10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4
[8] Armero, Proceedings of Engineering Mechanics 1 pp 136– (1996)
[9] Duarte, Computer Methods in Applied Mechanics and Engineering (2001)
[10] Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sceince. Cambridge University Press: Cambridge, UK, 1999. · Zbl 0973.76003
[11] Rao, International Journal for Numerical Methods in Engineering 47 pp 359– (2000) · Zbl 0988.74011 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<359::AID-NME775>3.0.CO;2-7
[12] Stolarski, International Journal for Numerical Methods in Engineering (2001)
[13] Melenk, Computer Methods in Applied Mechanics and Engineering 39 pp 289– (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[14] Krongauz, International Journal for Numerical Methods in Engineering 41 pp 1215– (1998) · Zbl 0906.73063 · doi:10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
[15] Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2000. · Zbl 0959.74001
[16] Strouboulis, International Journal for Numerical Methods in Engineering 47 pp 1401– (2000) · Zbl 0955.65080 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
[17] Keer, International Journal of Engineering Science 11 pp 1221– (1973) · doi:10.1016/0020-7225(73)90086-4
[18] Belytschko, International Journal for Numerical and Analytical Methods in Geomechanics 8 pp 473– (1984) · doi:10.1002/nag.1610080506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.